|Table of Contents|

Advance in 2 D System Theory(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
1998年04期
Page:
87-91
Research Field:
Publishing date:

Info

Title:
Advance in 2 D System Theory
Author(s):
Yang Chengwu Du Chunling
School of Dynamic Engineering, NUST, Nanjing 210094
Keywords:
linear sy stem discrete system state-space appro ach two-dimensional sy stem.
PACS:
O231
DOI:
-
Abstract:
T his paper out lines the develpment of the st ate-space theory for 2-D linear discrete sys tems . It surveyed and summarized the follw ing emphas izes problems s t at e-space model, s tat e response, separability and eigen-value; t ransf er funct ion matrix and realization; st abilit y and s tabilizabilit y; characterist ic polynomial and pole placement ; observer design and sys tem synthesis . Some new ideas abo ut their development have been present ed.

References:

1 Giv one D D, Roesser R P. Mult idimensiond linear it erative cir acuits-g eneral pro per ties.IEEE T rans Computers, 1972, 21( 5) : 1 067~1 073
2 For nasini E, M archesini G. State-space r ealiza tio n theo ry of t wo-dimensional filter s. IEEE Trans Aut om Co ntr , 1976, 21( 2) : 484~492
3 Kurek J E. T he general state-space mo del for a 2-D linear dig ital system. IEEE T rans Autom Contr , 1985, 30( 6) : 600~602
4 Kaczor ek T . T he sing ular g ener al m odel for 2-D systems and its solutio n. IEEE T rans Autom Contr 1988, 33( 3) : 1 060~1 061
5 邹云. N 维系统可分性充要判据. 控制理论与应用, 1990, 7( 4) : 95~100
6 Zou Yun , Yang Chengwu. An alg or ithm for computatio n of 2D eig env alues. IEEE Tr ans Autom Co ntr , 1994, 39( 7) : 1 436~1439
7 Benmahammed K. Computation o f the 2-D system freo uency r espo nse. IEEE Tr ans Cir cuits Sy tems 1989, 36( 1) : 126~128
8 Kung S Y . New result s in 2-D sy stems theor y, Par tⅡ: 2-D st ate-space models r ealization and the not ion of contr ollability , observ ability and minimality . Pro c IEEE, 1977, 65( 6) : 945~961
9 Ag athoklis P, Jur y E I, Mansour M . The discret e time str ictly bounded-r eal lemma and the computat ion o f positive definit e solut ions to the 2-D Lyapuno v equatio n. IEEE Tr ans Circuits Systems, 1989, 36( 6) : 830~837
10 Lu W S. On a Lyapuno v appro ach to st ability analysis of 2-D filter s. IEEE Tr ans Cir cuits Syst ems, 1994, 4( 10) : 665~669
11 Krause J M . Structured sing ular value analy sis o f multi dimensional system stability . IEEE Trans Aut om Co ntr , 1989, 34( 4) : 638~639
12 Lu W S. 2D stability t est v ia 1-D st ability r obustness analy sis. Int J Contr , 1988, 48( 10) :1 735~1 744
13 Kanellakis A, Tzafest as S G. Theo do ro u N. Comput atio n of the sta bility marg in of 2-D syst ems. IEEE Tr ans Autom Contr , 1992, 37( 6) : 824~828
14 Bisiauo M, For nasini E, Marchesini G. On some connectio ns bet ween BIBO and int ernalstabilit y o f 2-D filters. IEEE Tr ans Cir cuits Systems, 1985, 32( 6) : 948~953
15 Shimonish J, Sinha N K, Hinamoto T. Eigenvalue assignment of linear multiv ariable tw odimensional systems using compensato rs. I nt J Sy st Sci, 1989, 20( 5) : 779~792
16 Sebek M . On 2-D po le placement . IEEE Tr ans Autom Contr , 1985, 30( 6) : 819~822
17 Kaczo rek T . Tw o-dimensional linear systems. Ber lin, Heidelberg : Spr inger-Verlag , 1985
18 Hinamo to T , Fairman F W, Shimo nishi J. Sta bilizat ion o f 2D filter s using 2D observ ers.Int J Sy st ems Sci, 1982, 13( 1) : 177~191
19 Mar szaa lek W, Sedecki J. Dy namic pr og ramming fo r 2-D discr ete linear sy st ems. IEEE Trans Aut om Co ntr , 1989, 34( 1) : 181~184
20 Fu Yih. Design alg or it hms for dig ita l contr ol system s w ith deadbea t unit step r espo nse.IEE Pro c Pt D, 1983, 130( 3) : 119~127
21 Sebek M. Asymptotic tr acking for 2D and delay differential sy stems. Automatica , 1988, 24( 6) : 711~713
22 Bisiacco M. New r esults in 2D optimal contr ol theor y . Multidimen Syst & Signal Pr ocessing 1995, 32( 6) : 189~222

Memo

Memo:
-
Last Update: 2013-03-29