|Table of Contents|

A Fast SVM Learning Algorithm(PDF)

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2003年05期
Page:
530-535
Research Field:
Publishing date:

Info

Title:
A Fast SVM Learning Algorithm
Author(s):
YangJingyu WeiXingguo SunHuaijiang
Department of Computer Science and Technology,NUST,Nanjing 210094
Keywords:
pattern recognition machine learning support vector machine learning algorithm
PACS:
TP18
DOI:
-
Abstract:
Support vector machine( SVM) and its learning algorithm for pattern classif icat ion are presented. Based on the analysis and comparison of the ex ist ing SVM t raining algorithms, especially SMO, a revised decomposit ion algorithm named GD is proposed. It balances w ell betw een the scale of the subquadratic programming problem and the efficiency and t imes of iteration. Experimental results show that it can substant ially reduce the t raining t ime of SVM w ith nonlinear kernels.

References:

1 张学工. 关于统计学习理论与支持向量机[ J] . 自动化学报, 2000, 26( 1) : 32~ 42.
2 肖嵘, 王继成, 张福炎. 支持向量机理论综述[ J] . 计算机科学, 2000, 27( 3) : 1~ 3.
3 Perez-Cruz F, Navia-Vazquez A, Figueir as-Vidal A R, et al. Empir ical risk minimization for support vector classifiers[ J] . IEEE Transactions on Neural Netw orks, 2003, 14( 2) : 296~ 303.
4 Suykens J A K, van Gestel T, Vandewalle J, et al. A support vector machine formulation to PCA analysis and its kernel version[ J] . IEEE Transactions on Neural Networks, 2003, 14( 2) : 447~ 450.
5 魏兴国. 基于核方法的手写体数字识别研究[ D] . 南京: 南京理工大学计算机科学与技术系, 2003.
6 Cortes C, Vapnik V. Support vector networks[ J] . Machine Learning, 1995, 20( 2) : 273~ 297.
7 Platt J C. Fast training of SVM using sequential minimal optimization[ A] . Scholkopf B, Burges C J C, Smola A J. Advances in Kernel Methods ) Suppor t Vector Learning [ C] . Cambridge,MA: M IT Press, 1998. 185~ 208.
8 袁亚湘. 非线性规划数值方法[M] . 上海: 上海科学技术出版社, 1993.
9 Cr istianini N. Dynamically adapting kernels in suppor t v ector machines[ R] . London: Royal Holloway College, 1998.

Memo

Memo:
-
Last Update: 2013-03-17