|Table of Contents|

Effective Algorithm for Mining Constrained Association Rules

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2005年01期
Page:
109-112
Research Field:
Publishing date:

Info

Title:
Effective Algorithm for Mining Constrained Association Rules
Author(s):
YANG Wen-jie HU Ming-haoTANG Zhen-min YANG Jing-yu
Department of Computer Science and Technology, NUST, Nanjing 210094, China
Keywords:
datam ining association rules item constra int
PACS:
TP311.1
DOI:
-
Abstract:
M in ing constrained association ru les m ines some spec ial constrained rules and the resu lts are more pertain ing and practica.l Separate A lgorithm is a good algorithm to m ine constrained association rules and has two m ain shortages. One is that it scans candidate itemsets w ithout pruning; the other is that it creates candidate items redundantly. An improved algorithm, Separate P, is presented. The pruning on candidate sets is added to the a lgorithm, and Separate P makes fu ll use of the in fo rmation that the item sets create repeatedly. The prun ing is mademore effic ient and faster. The experimen tal resu lts show that Separate P can increase the Separate effic iency.

References:

[ 1] Agraw a lR, S rikant R. Fast a lgor ithm s fo rm ining assoc-i ation rules [ A ] . Proceed ing o f the 20 th Internationa l Conference on Ve ry Large Database [ C ]. Santiago: [ s. n. ], 1994, 487- 499.
[ 2] 崔立新, 苑森淼, 赵春喜. 约束性相联规则发现方法及算法[ J]. 计算机学报, 2000, 23( 2): 216- 220.
[ 3] 寇育敬, 王春华, 黄厚宽. 约束关联规则的增量式维护算法[ J]. 计算机研究与发展, 2001, 38( 8): 947- 951.
[ 4]" Dense" Da ta Sets [ DB /OL]. http: / /www. almaden. ibm. com /so ftw are /quest /resources / index. shtm .l 2002 - 07- 19.

Memo

Memo:
-
Last Update: 2013-03-03