|Table of Contents|

Dynamic Stiffening of Rigid-flexible Coupling System

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2006年01期
Page:
21-25
Research Field:
Publishing date:
2006-02-28

Info

Title:
Dynamic Stiffening of Rigid-flexible Coupling System
Author(s):
ZHANG Ding-guoZHU Zhi-yuan
School of Sciences,NUST,Nanjing 210094,China
Keywords:
rigid-flexible coupling system dynamic st iffening dynamic modeling
PACS:
O313.7
DOI:
-
Abstract:
The dynamic stiffening problem of a flexible cantilever beam attached to a moving central rigid body undergoing an arbitrary three-dimensional large overall motion is discussed. A set of dynamic equations for two-dimensional transverse and one-dimensional longitudinal vibrat ions of the flexible beam with the dynamic stiffening terms was established by utilizing the different ial element method. The flexible beam was discretized by employing the approach of assumed modes and the effects of the transverse deformat ion-induced longitudinal deformation were also included in the whole longitudinal deformation . An example was given to validate the present method and to show the significant effects of the dynamic stiffening terms on the deformation of the flexible beam.

References:

[ 1] Barbieri E,&Ozg?ner&U . Unconstrained and constrained mode expansions for a flexible slewing link[ J] . Journal of Dynamic Systems, Measurement, and Control, 1988, 110( 4) : 416- 421.
[ 2] Chait Y,Miklavc%ic%M, Maccluer C R, Radcliffe C J. A natural modal expansion for the flex ible robot arm problem via a sel-f adjoint formulation[ J] . IEEE Transactions on Robotics and Automation, 1990, 6( 5) : 601- 603.
[ 3] Morg?l &O . Orientation and stabilization of a flex ible beam attached to a rigid body: Planar motion[ J] . IEEE Transactions on Automatic Control, 1991, 36( 8) : 953- 962.
[ 4] Choura S, Jayasuriya S, MedickM A. On the modeling and open- loop control of a rotating thin flex ible beam[ J] . Journal of Dynamic Systems, Measurement, and Control, 1991, 113( 1) : 26- 33.
[ 5] Kane T R, Ryan R R, Banerjee A K. Dynamics of a cantilever beam attached to a moving base[ J] . Journal of Guidance, 1987, 10( 2) : 139- 151.
[ 6] Banerjee A K, Kane T R. Dynamics of a plate in large overall motion[ J] . Journal of Applied Mechanics, 1989, 56: 887- 892.
[ 7] Banerjee A K, Dickens J M. Dynamics of an arbitrary flexible body in large rotation and translation[ J] . Journal of Guidance, Control and Dynamics, 1990, 19: 221- 227.
[ 8] Wu S C, Haug E. Geometric non- linear substructuring for dynamics of flexible mechanical systems[ J] . International Journal for Numerical Methods in Engineering, 1988, 26: 2 211- 2 226.
[ 9] Zhang D J, Liu C Q, Huston R L. On the dynamics of an arbitrary flexible body with large overall motion: An Integrated Approach[ J] . Mech Struct & Mach, 1995, 23( 3) : 419- 438.
[ 10] Bloch A M. Stability analysis of a rotating flexible system[ J] . Acta Applicandae Mathematicae, 1989, 15: 211- 234.
[ 11] 肖世富, 陈滨. 一类刚- 柔耦合系统的建模与稳定性研究[ J] . 力学学报, 1997, 29( 4) : 439- 447.
[ 12] 蒋丽忠, 洪嘉振. 作大运动弹性薄板中的几何非线性与耦合变形[ J] . 力学学报, 1999, 31( 2) : 243- 249.
[ 13] 蒋丽忠, 洪嘉振, 赵跃宇. 作大范围运动弹性梁刚- 柔耦合动力学建模[ J] . 计算力学学报, 2002, 19( 1) : 12- 15.
[ 14] 杨辉, 洪嘉振, 余征跃. 刚- 柔耦合多体系统动力学建模与数值仿真[ J] . 计算力学学报, 2003, 20( 4) : 402- 408.
[ 15] 朱志远. 一类刚柔耦合多体系统动力学建模与仿真[ D] . 南京: 南京理工大学理学院, 2004.

Memo

Memo:
-
Last Update: 2006-02-28