|Table of Contents|

Nonlinear Perturbation for a Class of Pseudoparabolic Equations

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2006年03期
Page:
381-384
Research Field:
Publishing date:
2006-06-30

Info

Title:
Nonlinear Perturbation for a Class of Pseudoparabolic Equations
Author(s):
WU Jian-cheng~1WO Song-lin~2
1.Department of Information Science,Jiangsu Polytechnic University,Changzhou 213164,China;2.Academic Affairs Office,Changzhou College of Information Technology,Changzhou 213164,China
Keywords:
pseudoparabo lic equation non linear perturbation homeomorphism ex istence of the solution
PACS:
O 175. 29
DOI:
-
Abstract:
Th is paper discusses the nonlinear perturbation o f the in itia-l boundary value prob lem s for a c lass of non linear pseudoparabo lic equa tions $ u + 5u 5t - 5u 5t - f (x, t, u) = F x, t, u, 5u 5xi . A coerciv ity inequality inH ilbert space is founded. By using homeomorph ism method and the ex tended inverse function theorem, the ex istence and un iqueness o f the solution for the sem -i linear pseudoparabo lic equat ions is obta ined. Based on this, the relevant non linear perturbation of the problems is proposed. Through constructing a corresponding compact operator, estimating the operator w ith homotopic method and using Schauder fix theo rem, the ex istence of the so lut ion of the perturbation problems is g iven.

References:

[ 1] T ing T W. Certa in non-steady flows of second-o rder fluids [ J]. A rch Rational M ech Ana ,l 1963, 14 ( 1): 1- 26.
[ 2] Elcrat A. Coerc iv ity fo r a third o rder pseudoparabolic opera tor w ith applications to sem ilinear equations [ J]. M ath Ana lApp ,l 1977, 61: 841- 849.
[ 3] Showa lter R, T ing T W. Pseudopa rabo lic partia l di-f ferential equations[ J]. SIAM JM ath Ana,l 1970, 1 ( 1): 1- 26.
[ 4] 周毓麟, 袁光伟. 两维完全非线性伪抛物方程组的 差分格式[ J]. 中国科学A, 1995, 25 ( 2): 1 249 - 1 258.
[ 5] 肖黎明. 一类高阶多维非线性伪抛物方程组[ J]. 数学物理学报, 1993, 13 ( 3): 303- 309.
[ 6] 李凤泉, 刁建东. 伪抛物型方程组的一类非线性非 局部边值问题[ J]. 曲阜师范大学学报, 1999, 25 ( 2): 9- 13.
[ 7 ] K arch G. A sym ptotic behav ior of solution to som e pseudopa rabo lic equation [ J]. M a th M e thods App l Sc,i 1997, 20 ( 3) : 271- 289.
[ 8 ] Bouziani A. Solvab ility of non linear pseudoparabolic equa tion w ith a nonlocal boundary cond ition [ J ]. Non linear Ana lys is, 2006, 55: 883- 904.
[ 9] P lastock R. H om em orphism between Banach space [ J]. Trans Am erM a th Soc, 1974, 200 ( 2): 169- 183.

Memo

Memo:
-
Last Update: 2006-06-30