|Table of Contents|

Solution for Optimal Control of Distributed Parameter Systems Based on Laguerre Polynomial


Research Field:
Publishing date:


Solution for Optimal Control of Distributed Parameter Systems Based on Laguerre Polynomial
DONG Xue-ping12XU Ben-lian1WANG Zhi-quan1
1.School of Automation,NUST,Nanjing 210094,China;2.Institute of Automation,Hefei University of Technology,Hefei 230009,China
distributed param eter system s optima l control Laguerre po lynom ial orthogonal po lynom ial
The opt imal contro l approx imat ion a lgorithm for distributed parameter systems ( DPS) is discussed. Some conclusions are m ade from the orthogonal property and the integrated operational matrix of Laguerre po lynom ia.l The integ ral perfo rmance index o f the opt imal contro l of the systems is changed into a correspond ing algebraic fo rm by these conclusions, and the optima l con tro lproblem of a class o fDPS is transformed into a sim ilar a lgebra ic prob lem. The search ing procedure is presented. The proposed method simplifies the procedure o f so lv ing optim al contro l prob lem s o f DPS and the distributed parameter property of optim al contro l and state is ma inta ined. The approx imation effect is ana lyzed w ith theo ry and comparison. Simu lation resu lts show the effectiveness of the proposedmethod.


[ 1] 吴锡华, 李双虎, 李华. 工业分布参数系统的最优 控制[ J]. 河北省科学院学报, 1998, 2: 1- 8.
[ 2 ] 郑立辉, 冯珊, 潘德惠. 宏观经济管理中一类系统 的最优控制问题研究[ J] . 控制与决策, 1998, 13 ( 3): 250- 253. - 57.
[ 3] 徐正光, 李晓丹, 曹长修. 时变分布参数系统的参 数估计[ J]. 控制与决策, 1991, 6( 1): 37- 42.
[ 4] Rang anathan V, Jha A N, Rajam ani V S. Identification o f lum p linear tim e-vary ing system v ia laguerre po lynom ia l [ J] . Int J Sys Sc,i 1987, 18 ( 4): 673- 680.
[ 5] M ahadevan N, H oo K A, W ave let-based m ode l reduction o f distr ibuted pa ram e ter system s [ J]. Chem ica l Eng ineer ing Sc ience, 2000, 55 ( 19): 4 271- 4 290.
[ 6] H orang I R, Chou JH, Tsa i C H. Ana lysis and identification o f linear distr ibuted param eter system s v ia Cheby shev se ries [ J]. In ternational Journal of System s Sc ience, 1986, 17 ( 7): 1 089- 1 095.
[ 7] 莫国端, 刘开第. 函数逼近论方法[M ] . 北京: 科学 出版社, 2003.
[ 8] 戴华. 矩阵论[M ]. 北京: 科学出版社, 2001.
[ 9] 徐利治, 周蕴时, 孙玉柏. 逼近论[M ] . 北京: 国防 工业出版社, 1985.
[ 10] 吴斌, 钟宜生. 多维分段广义正交多项式算子及其 在分布参数系统辨识中的应用[ J]. 控制与决策, 2002, 17( 4): 397- 401.


Last Update: 2007-06-30