|Table of Contents|

Polygon Meshless Method:A New Meshless Method Based on MLPG Approach


Research Field:
Publishing date:


Polygon Meshless Method:A New Meshless Method Based on MLPG Approach
GUO Feng1ZHAO Wei-min2LI Gui-xian1
1.School of Mechatronics Engineering,Harbin Institute of Technology,Harbin 150001,China;2.School of Machinery Science and Engineering,Daqing Petroleum Institue,Daqing 163001,China
mesh less methods po lygon meshless method improved PU function
In o rder to decrease the computat iona l cost o fm eshlessmethod, th is paper presents a new MLPG method) Po lygon Mesh less method ( PMLPG) . Th is me thod uses improved PU function as shape function, w hich can make the trail function sat isfy the essent ial boundary cond it ion prev iously. Local doma in is a po lygon area, the center o fw hich is a node, and its vertexes align w ith the ne ighbor nodes. So, the overlap of integer dom ain is less, w h ich increases the computationa l eff-i ciency. A ne ighbor nodes database is created, wh ich can improve the neighbo r nodes searching speed. Compared w ith the tradit iona lMLPG m ehtod, PMLPG is more applicable and efficien.t The num er ical examples prove that PMLPG is an app licable and accurate meshlessm ethod.


[ 1] Be ly tschko T, Lu Y Y, Gu L. E lem en t-free Ga lerkinm ethods [ J]. Int J num er M e th Engng, 1994, 37: 229- 256.
[ 2] LiuW K, Chen Y. W ave le t and mu ltiple scale reproduc ing kerne lm e thod [ J]. Int J Num erM ethods Fluids, 1995, 21: 901- 931. [ 3 ] A tluri S N. A new m eshless lo ca l Petrov-Ga le rk in (MLPG) approach in computationa l in m echanids[ J]. Com putationa lM echan ics, 1998, 22 ( 2): 117- 127.
[ 4] De S, Bathe K J. The m ethod o f finite spheres [ J]. Com puta tiona lM echan ics, 2000, 25: 329- 345 .
[ 5] 蔡永昌. 基于局部Petrov-Galerk in过程的自然单元 法及其面向对象的设计与实现[ J]. 岩石力学与工 程学报, 2003, 22( 8) : 1263- 1268.
[ 6] 卢波. 有限元法、无单元法及自然单元法之比较研究 [ J]. 岩土力学与工程学报, 2005, 24( 5): 780- 786.
[ 7] 王勖成. 有限单元法基本理论和数值方法[M ]. 北 京: 清华大学出版社, 2000. 38- 41.
[ 8] Babuka I. The partition of un ity m ethod[ J]. Int J fo r Num erM ehtods in Enggrg, 1997, 40: 727- 758.
[ 9] Stephen B, B elytschko T. Noda l integ ra tion o f the e lem ent-free ga lerkin me thod [ J]. Com putM e thods App l M ech Eng rg, 1996, 139: 49- 74.
[ 10] 徐长发. 偏微分方程的数值解法[M ] . 武汉: 华中 理工大学出版社, 2000. 138- 145.
[ 11] T im oshenko S P, Goodier J N. Theory o f e lastic ity [M ]. USA: M cGraw-H il,l 1970. 98- 101.
[ 12] 张雄. 加权最小二乘无网格法[ J]. 力学学报, 2003, 35( 4): 425- 431


Last Update: 2007-06-30