|Table of Contents|

Necessary and Sufficient Conditions for Complete Stability of General Gradient System


Research Field:
Publishing date:


Necessary and Sufficient Conditions for Complete Stability of General Gradient System
JIANG Ning-qiang1SONG Wen-zhong2
1.School of Automation,NUST,Nanjing 210094,China;2.School of Automation,Southeast University,Nanjing 210096,China
pow er system transien t stab ility genera l g radient system po tent ia l energy boundary surface complete stability
Th is paper investigates topo log ical propert ies o f the genera l grad ient system, and demonstrates by results of d ifferent ia l topo logy that the boundedness o f the general gradient system is equ ivalent to the boundedness o f the potential energy boundary surface ( PEBS) . Moreover, a general grad ient system is bounded i,f and only if the system has both sink po int and source po in.t B ased on these resu lts, a feasible method is proposed to check the comp lete stability of the genera l g rad ien t system. The results are con firmed by simu lations on a 3-machine system, the N ew Eng land system and the IEEE50m ach ine test system.


[ 1] Kak imo toN, Ohsaw aY, H ayashiM. Transient stab il-i ty ana lys is of large-scale powe r system s by Liapunov. s d irect m ethod [ J]. IEEE Trans Pow er App Syst, 1978, PAS- 103 ( 1): 160- 167.
[ 2] Chiang H D, Chu C. Theoretica l founda tion of theBCU m ethod for direc t stability ana lysis of network- reduction pow er system m odels w ith sm all transfer conductance [ J]. IEEE Trans CAS, 1995, 42 ( 5): 252- 265.
[ 3] Bonv in i B, M assucco S, M or in iA, e t a.l Comparativ e ana lysis o f pow er system trans ient stab ility assessm ent by direct and hybr id m ethods [ A ]. 8th M ed iterranean, E lectrotechn ica l Conference [ C ] . New York: IEEE Press, 1996. 1 575- 1 579.
[ 4] Ch iang H D, W u F F, V ara iya P P. Foundations of the poten tia l ene rgy boundary surfaceme thod for power system transient stability ana ly sis [ J]. IEEE Trans on C ircuits and System s, 1988, CAS- 35 ( 6): 712- 728.
[ 5] 江宁强, 宋文忠, 戴先中. BCU 法前提条件的验证 [ J] . 中国电机工程学报, 24( 6) : 44- 48.
[ 6] Sm a le S. On g radien t dynam ica l system s [ J]. Ann M a th, 1961, 74: 199- 206.
[ 7] 叶彦谦. 曲面动力系统[M ]. 北京: 科学出版 社, 1991.
[ 8] 盛平兴. 空间动力系统极限集之分类[ J] . 商丘师 范学院学报, 2001, 17( 6) : 39- 43.
[ 9] 叶桂芬. 有关闭集和同胚的条件的讨论[ J]. 西安 地质学院学报, 1994, 16( 3) : 92- 94.
[ 10] Zabo rszky J, H uang G, Zheng B, et a .l On the phase portra it of a class of large non linear dynam ica l system s such as the powe r system [ J] . IEEE T rans on Autom atic Con tro ,l 1988, 33 ( 1): 4- 15.
[ 11] Ba illieul J, Byrnes C. Geometric po int ana lysis of lossless pow er system m odels [ J]. IEEE Trans on C ircuits and System s, 1982, CAS- 29 ( 11): 724- 737.
[ 12] Anderson P M, Fouad A A. Pow er system contro l and stab ility [M ]. Pisca tew ay, NJ: IEEE Press, 2003.
[ 13] Luna-Lopez I, Canado J M. Dynam ica l me thod fo r CUEP detec tion in pow er sy stem transient stab ility assessm ent [ A]. IEEE PESW in terM ee ting [ C] . Piscatew ay: IEEE Press, 2002. 189- 194.
[ 14] 侯凯元, 闵勇. 基于伴随系统理论的电力系统主导 不稳定平衡点求解方法[ J]. 现代电力, 2005, 22( 1): 21- 26.
[ 15] 江宁强, 宋文忠. 基于非线性保稳变换的电力系统 暂态稳定分析方法[ J] . 南京理工大学学报, 2007, 31( 2): 205- 209.


Last Update: 2007-08-30