|Table of Contents|

Chaotic Signal Detection and Track Based on Modified Extended Kalman Filter and Particle Filtering


Research Field:
Publishing date:


Chaotic Signal Detection and Track Based on Modified Extended Kalman Filter and Particle Filtering
XU Mao-ge1SONG Yao-liang1LIU Li-wei2
1.School of Electronic Engineering and Optoelectronic Technology;2.School of Sciences,NUST,Nanjing 210094,China
chaot ic signal signal detect ion ex tended Ka lman filter part icle filtering
In v iew of the difficult problem in the chao tic signal detection and track in the abom inable env ironm ents, and the degenerate phenomenon o f the trad itional extended Kalman f ilter ( EKF ) w hich is based on the f irst order lineariza tion, amod if ied EKF is developed that hasmuch better robustness than the traditiona l EKF and gets a lmost the same performance as the Unscented Ka lman filter. The two filters ment ioned above experience large track error in the low signal no ise ratio ( SNR) , and a novel particle filter wh ich can be used in the non linear and non-Gaussian env ironments is introduced and a lso its feasibility is ana ly zed. The simu lation demonstrates the superiorit ies of particle filtering in the low SNR.


[ 1] Peco ra L, Ca ro ll T. Synchron ization in chao tic system s [ J]. Physics Rev iew Le tter, 1990, 64: 821- 823.
[ 2] Kolumb?n G, K ennedy M P, Chua L O. The ro le o f synchron ization in dig ital commun ica tions using chaospart II: chaoticm odulation and chaotic synchron iza tion [ J] . IEEE Transactions on C ircuits System s – I, 1998, 35: 1 129- 1 140. [ 3 ] Leung H, Zhu Z. Perform ance ev alua tion o f EKFbased chaotic synch ronization [ J]. IEEE Transactions on C ircuits System s- I, 2001, 48: 1 118- 1 125. [ 4 ] Ju lier S, Uhlm ann J, Durrant-W hy te H F. A new m ethod fo r the non linear transfo rmation o f m ean and covariance in filte r and estima to r [ J]. IEEE T ransactions on Autom aticContro,l 2000, 45 ( 3): 477- 482.
[ 5] Azou S, Bure l G. A comp le te rece ive r so lution for a chaotic direct-sequence spread spectrum comm un ication sy stem [ A ]. IEEE ISCAS [ C ]. Kobe, Japan. IEEE Press, 2005. 3 813- 3 816.
[ 6] Doucet A, Godsill S, Andr ieu C. On sequen tia lM on te Ca rlo samp ling m ethods for Bayesian filte ring [ J ]. Statistic Compu ting, 2000, 10 ( 3): 197- 208.
[ 7] Gusta fsson F, H rijac P. Partic le filters fo r system -i dentifica tion w ith application to chaos prediction [ A ]. SYSID [ C ]. Rotterdam, NL: IFAC Pub lisher, 2003. 1 014- 1 019.
[ 8] Schon T, Gustafsson F. Particle filters fo r system -i dentification of state- space m ode ls linear in e ither param eters or states [ A ]. SYSID [ C]. Rotterdam, NL: IFAC Pub lisher, 2003. 1 287- 1 292.
[ 9] Gaustafsson F, H r iljac P. Particle filters for pred iction of chaos [ A]. The 13th IFAC Symposium on Sy stem Identification [ C ]. Ro tterdam, NL: IFAC Publisher, 2003. 589- 594.
[ 10] 宋耀良, 金文, 是湘全, 刘中. 基于双卷吸引子的 混沌二相码序列及其模糊特性[ J]. 南京理工大学 学报, 2000, 24( 1): 37- 41.
[ 11] Gordon N J, Salmond D J, Sm ith A F M. Nove l approach to nonlinea r/non-G aussian Bayesian state est-i m ation [ J]. IEE, 1993, 140 ( 2): 107- 113.


Last Update: 2007-08-30