|Table of Contents|

Harmonic Control Model Based on Hadamard Product


Research Field:
Publishing date:


Harmonic Control Model Based on Hadamard Product
LIU Xin-jinZOU Yun
School of Automation,NUST,Nanjing 210094,China
harmonic control isolation and obstruction control Hadamard product
In terms of matrix Hadamard product a new control model is proposed for regulating connection coefficients of the state variables of the systems.It combines the traditional feedback compensation and the direct regulations for the connections of system states.A new control law to stabilize the systems is obtained via bilinear matrix inequalities involving Hadamard product.This new control model is of significant application in many fields,especially in the emergency control such as isolation and obstruction control.


[1]Duan Zh-i sheng, H uang L in, W ang J in- zh,i et a.l H arm on ic contro l between two system s [ J] . Acta Autom atica S in ica, 2003, 29 ( 1): 14- 21.
[2] Sun K, Zheng D, Lu Q. A sim ulation study of OBDD- based proper sp litting strateg ies fo r pow er system s under consideration of transien t stab ility [ J]. IEEE Transaction on Pow er System s, 2005, 20 ( 1): 389- 399.
[3] Sun K, Zheng D, Lu Q. Splitting strateg ies for island ing operation of large- sca le pow er system s using OBDD- based m ethods [ J]. IEEE Transac tions on Pow er System s, 2003, 18 ( 2): 912- 923.
[4] Zhao Q, Sun K, Zheng D, et a.l A study of sy stem splitting strateg ies fo r island operation of powe r system: A tw o-phase m e thod based on OBDDs [ J]. IEEE T ransactions on Pow er System s, 2003, 18 ( 4): 1 556- 1 565.
[5] Y an Y, Zou Y, L i J. Optim a l quarantine and iso lation strateg ies in ep idem ics contro l [ J] . W o rld Journa l o fM ode ling and S imu lation, 2007, 3 ( 3): 202- 211.
[6] Yan X, Zou Y. Optim a l and sub-optima l quarantine and iso la tion contro l in SARS epidem ics [ J]. M athem atica l and Com puter M ode lling, 2007 ( 47 ): 235 - 245
[7] Yan X, Zou Y. Optim a l con tro l for internet wo rm [ J]. ETRI Journa,l 2008, 30 ( 1): 81- 88.
[8] H orn R A, Johnson C R. Topics in m a trix ana lys is [M ]. London: C amb ridgeUn ive rsity Press, 1986.
[9] Chen Shencan. A low er bound fo r them in imum e igenva lue of theH adam a rd product o fm atr ices [ J]. Linea r A lgebra and Its Applications, 2004, 378: 159 - 166.
[10] Li H oub iao, H uang Tingzhu, Shen Shuq ian, et a.l Low er bounds fo r the m inim um e igenva lue o f H adam ard product o f an M-m atr ix and its inve rse [ J]. Linear A lgebra and Its App lications, 2007, 420: 235 - 247.
[11] V is ick G. A quantitative version o f the observa tion that theH adam ard product is a princ ipa l subm atr ix o f the Kronecker product [ J]. L inear A lgebra and Its Applica tions, 2000, 304: 45- 68.
[12] Neum annM. A con jecture conce rn ing the H adam ard product of inverses o fM-m atrices [ J] . L inear A lgebra and Its App lications, 1998, 285: 277- 290


Last Update: 2012-12-05