|Table of Contents|

E-mail Information Classifier of Neural Network Based on Genetic Algorithm Optimization


Research Field:
Publishing date:


E-mail Information Classifier of Neural Network Based on Genetic Algorithm Optimization
YUAN Jia-binPU Hai-chen
College of Information Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
e-mail information classifiers feature selection genetic algorithms artificial neural network
Combined with the research on Anti-Spam technology,the feature selection algorithm in pretreatment of e-mail information and the method of applying machine learning technology to digital information classifier is analyzed.In view of the problem that mail message eigenvector is so huge,GACHI feature selection algorithm as pretreatment of information is proposed.It transforms complicated e-mail information into the form which can be easily managed by machine learning.In order to further enhance the effectiveness of Chinese e-mail classification,e-mail information classifier based on BP neural network adopts genetic algorithm to optimize itself.Experimental analysis of the system shows that the method described in the paper can effectively realize the classification of the e-mail information.


[1] M itche ll T. M achine Learn ing [M ]. Be ijing: Ch ina M ach ine Press, 2003.
[2] Kwak N, Cho iC. Input feature se lec tion fo r c lassification problem s [ J ]. IEEE Trans Neu ra l Netwo rks, 2002, 13 ( 1): 221- 230.
[3] L iu H, Yu L. Tow ard integ rating feature se lection a-l gor ithm s fo r class ification and cluster ing [ J]. IEEE Trans on Know ledge and Data Eng ineer ing, 2005, 17 ( 3): 1- 12.
[4] Yang Y M, Liu X. A re- exam ina tion of text categor-i za tion m ethods [ J]. Proceedings o f S IGIR-99, 22nd ACM Interna tiona l Con ference on Research and Deve-l opm ent in In fo rm ation Retriev a,l Be rkeley, US: 1999, 42- 49.
[5] M laden ic D, Grobe linkM. Feature se lec tion on h ie rarchy o f web docum ents [ J]. Dec ision Support System s, 2003, 35: 452- 475.
[6] H aykin S. 神经网络原理[M ] . 叶世伟, 史忠植, 译. 北京: 机械工业出版社, 2004.
[7] 赵云, 刘惟一. 基于遗传算法的特征选择方法[ J]. 计算机工程与应用, 2005, 15: 52- 54.
[8] 张金萍, 刘杰, 李允公. 一种动态种群不对称交叉 的新型遗传算法[ J]. 南京理工大学学报, 2007, 31 ( 4): 444- 448.
[9] 刘颖, 谷延锋, 张晔. 基于改进遗传算法的超光谱 图象特征选择方法[ J]. 哈尔滨工业大学学报, 2005, 37( 6) : 733- 735.
[10] 杜福银, 徐扬. 基于递归神经网络的预测模糊控制 [ J]. 西南交通大学学报, 2006, 41( 6): 733- 736.
[11] H aber R E, A lique J R, A liqueA, e t a.l Contro lling a comp lex electrom echanica l process on the basis of a neuro fuzzy approach [ J]. FutureGene ration Compu ter Systems, 2005, 21 ( 7): 1 083- 1 095


Last Update: 2012-12-05