|Table of Contents|

Modeling Steganographic Counterwork by Game Theory


Research Field:
Publishing date:


Modeling Steganographic Counterwork by Game Theory
LIU Guang-jieDAI Yue-weiZHAO Yu-xinWANG Zhi-quan
School of Automation,NUST,Nanjing 210094,China
steganography steganalysis game theory
The steganographic game with the expected secure data transmission rate as the payoff function is proposed.The counterwork relationship is modeled between steganography side and attack side.According to the three situations that the relative embedding rate is fixed,chosen by the probability and freely chosen,the steganographic counterworks are modeled to the matrix game,the Bayesian game and the two-person zero-sun infinite game separately.The equilibrium conditions and the corresponding equilibrium expected secure data transmission rates are obtained.The instauration of the steganographic counterwork model provides the theoretic basis for the steganography side and the attack side to choose their optimal strategies,and brings some guidance for designing more secure steganographic algorithms.


[1] Zo llne r J, K limantH, Pfizm ann A, et a,l M ode ling the secur ity o f steganog raph ic system s [ J]. Lecture Notes in Com puter Sc ience, 1998 ( 1 525): 345- 355.
[2] Cachin C, An info rma tion??theoretic m ode l for steg?? anography [ J] . Inform ation and Compu tation, 2004, 192 ( 1): 41- 56.
[3] W ang Y, M oulin P. Stegana ly sis of b lock??structured stego tex t [ A] . Proceedings o f SPIE: Secur ity, Steg?? anography, andW aterm ark ing o fM ultim edia Contents VI [ C ]. San Jose, CA: SPIE, 2004. 477- 488.
[4] 陈丹, 王育民. 基于图像模型的掩密安全性定义 [ J]. 哈尔滨工业大学学报, 2006, 38 ( sup. ) : 901 - 904.
[5] Sa llee P. M ode l??based steganog raphy [ J]. Lecture No tes in Com puter Sc ience, 2003( 2 939): 154- 167.
[6] Cox I J, Ka lkerT, PakuraG, et a .l Info rm ation trans?? m iss ion and steg anog raphy [ J ]. Lecture No tes in Computer Sc ience, 2005 ( 3 710) : 15- 29.
[7] Katzenbe isser S, Pe titco las F A. De fin ing secu rity in steganographic system s [ A]. Proceed ings of SPIE Se?? curity and W ate rm ark ing o fM ultim edia Contents & [ C]. San Jose, CA: SPIE, 2002. 50- 56.
[8] H opperN J, Lang fo rd J, Luis V A. Provab ly secure steganog raphy ( Ex tended abstrac t) [ J ]. Lecture No tes in Com puter Science, 2002 ( 2 442): 77- 92.
[9] M ou lin P, O? Su llivan J A. Info rm ation??theo retic ana l?? ysis o f inform ation hiding [ J]. IEEE Transaction on Inform ation Theory, 2003, 49 ( 3): 563- 593.
[10] M ou lin P, M ihcakM K. The paralle l??Gauss ian w ate r?? m ark ing gam e [ J]. IEEE T ransaction on Info rma tion Theory, 2004, 50 ( 2): 272- 289.
[11] Cohen A S, Lap idoth A. The Gaussian waterm ark ing g am e [ J] . IEEE Transac tion on Inform a tion Theory, 2002, 48 ( 6): 1 639- 1 667.
[12] E ttinger J. Stegana lysis and g am e equ ilibriap [ J]. Lecture No tes in Com puter Sc ience, 1998 ( 1 525): 319- 328.
[13] 刘春庆, 李忠新, 王执铨. 隐秘通信系统的对策论 模型[ J]. 通信学报, 2004, 25( 5) : 160- 165


Last Update: 2008-04-30