|Table of Contents|

Robust Stabilization for a Class of Uncertain Nonlinear Two-dimensional Markovian Jump Systems in Roesser Model


Research Field:
Publishing date:


Robust Stabilization for a Class of Uncertain Nonlinear Two-dimensional Markovian Jump Systems in Roesser Model
SHENG Mei1WANG Wei-qun1ZOU Yun2
1.School of Sciences;2.School of Automation,NUST,Nanjing 210094,China
two-dimensional systems Roesser model Markovian jump systems Lipschitz nonlinearities robust stochastic stabilization
This paper considers the problem of robust stabilization for uncertain 2-D Markovian jump systems in Roesser model with a class of generalized Lipschitz nonlinearities.The parameter uncertainty is assumed to be norm-bounded.The purpose of the problem is to design a state feedback controller such that the resulting closed-loop system is mean square asymptotically stable for all admissible uncertainties.In terms of linear matrix inequalities(LMIs),a sufficient condition for the solvability of the problem is given.A desired state feedback controllers can be constructed by solving certain LMIs.A simulation example shows the effectiveness of the algorithm.


[1] Du C, X ie L. Control and Filtering o fTw o??dim ension?? al Systems[M ] . H eide lberg: Spr ing er??Ve rlag, 2002.
[2] Xu S, Lam J, L in Z, et a.l Pos itive rea l contro l fo r uncerta in tw o??dim ens iona l system s [ J ]. IEEE Trans C ircu its Syst I, 2002, 49: 1 659- 1 666.
[3] Cao Y, Lam J. Robust contro l o f uncerta inM arkov ian jump system s w ith time delay[ J]. IEEE T rans Auto?? m at Contro ,l 2000, 45: 77- 83.
[4] De Souza C E, Frago soM D. RobustH ?? filter ing fo r unce rtain M arkov ian jump linear sy stem s [ J]. Int J Robust and Non linear Contro,l 2002, 12: 435- 446.
[5] G ao H, W ang C, Lam J, et a.l Stab ilization o f 2- D M arkov ian jump systems in Roesser model[ R] . Kun?? m ing: The E ight Inte rnational Conference on Contro ,l Autom ation, Robo tics and V ision, ICARCV 2004.
[6] Xu S, ZouY, Lam J, et a.l Robust stabilization for a class of uncerta in nonlinear two??dmi ensiona l systems[R]. Kun?? m ing: The E ight Internationa lConference on Contro,l Auto?? m ation, Robotics and Vision, ICARCV 2004.
[7] Boukas E, Liu Z. Delay??dependent stab iliza tion of sin?? gu lar pe rturbed jump linear systems[ J]. Int J Contro ,l 2004, 77( 3) : 310- 319.


Last Update: 2008-04-30