|Table of Contents|

Application of UKF in Bearings-only Target Motion Analysis


Research Field:
Publishing date:


Application of UKF in Bearings-only Target Motion Analysis
LIU Jian12LIU Zhong1
1.Electronics Engineering College,Naval University of Engineering,Wuhan 430033,China;2.Unit No.91458 of PLA,Sanya 572021,China
bearings-only target motion analysis unscented Kalman filter unscented transformation
The traditional algorithms applied in bearings-only target motion analysis(BD-TMA) have some shortages or disadvantages such as biased,slow convergence or divergence.To solve the problem,unscented Kalman filter(UKF) is applied in bearings-only target motion analysis.The realization of UKF is comparatively simple and convenient because UKF is feasible in processing non-linear problems and doesn’t compute the Jacobian Matrix or Hessian Matrix.In this paper,the UKF is applied in BO-TMA through bringing forward the filtering steps of algorithm based on the principle of unscented transformation(UT).Theoretical analysis and simulation result indicate that the UKF has the same performance to 2-rank Gauss filter and has better performance than traditional algorithms in precision,stability and convergence time when it is applied in BO-TMA.


[1] Berm an Z. A re liab le m ax im um like lihood a lgor ithm for bearing??only target mo tion analysis [ A ]. IEEE proceed ing s o f the 36th Conference on Dec is ion and Con tro l [ C] . San D iego: The 36 th Conference on De?? cision and Control 1997. 5 012- 5 017.
[2] M o Longb ing, Xu Yaow e.i Bear ing s-only location using nonlinear least squares [ A]. Proceed ing s of the IEEE Na tiona l Ae rospace and E lectron ics Con ference [ C ]. Dayton: the IEEE National Aerospace and Electronics Confe rence 1997. 1 042- 1 044.
[3] 吴玲, 刘忠, 卢发兴. 全局收敛高斯- 牛顿法解非 线性最小二乘定位问题[ J]. 火控雷达技术, 2003, 32( 1): 75- 80.
[4] A ida la V J. Kalm an filter behav io r in bearings-on ly track ing applications [ J]. IEEE Transaction on AES, 1979, 15 ( 1): 29- 39.
[5] Rao S K. M od ified ga in extended kalm an filter w ith application to angles only underw ater passive ta rget tracking [ A ]. Proceed ings of Internationa l Confe rence on S ignal Process ing [ C]. Beijing: Internationa l Conference on Signa l Processing, 1998. 1 439 - 1 442.
[6] 高磊, 严卫生, 任章, 等. 改进型自适应推广卡尔曼 滤波器的应用[ J]. 火力与指挥控制, 2000, 25( 3): 13- 16.
[7] 王淇胜, 李华军. 纯方位目标跟踪- 直角坐标卡尔 曼滤波算法[ J] . 青岛海洋大学学报, 2000, 30( 2): 352- 356.
[8] Julier S J, Uhlmann J K. A new approach fo r filter ing non linear system s [ A] . Proceed ing o f the Am er ican Con tro l Conference [ C]. W ash ing ton: The Am er ican Con tro l Conference 1995. 1 628- 1 632.
[9] 蔡洪. Unscented K alm an滤波用于再入飞行器跟踪 [ J] . 飞行器测控学报, 2003, 22( 3): 12- 16.
[10] 张红梅, 邓正隆. UKF方法在陆地车辆组合导航中的 应用[ J]. 中国惯性技术学报, 2004, 12( 4): 20- 23.
[11] 管旭军, 芮国胜. 基于UKF的单站无源定位算法 [ J] . 电光与控制, 2004, 11( 1): 34- 36.
[12] 吴玲, 卢发兴, 刘忠. UKF 算法及其在目标被动跟 踪中的应用[ J]. 系统工程与电子技术, 2005, 27 ( 1): 49- 51.
[13] Merwe R, W an E A. The Square-roo t unscen ted Ka-l m an filter for state and parame ter- estim ation [ A]. The proceeding o f the Internationa l Conference on Acoustics, Speech and S ignal Processing 2001 [ C ]. Salt Lake C ity: Internationa l Conference on Acoustics, Speech and S igna l Processing 2001. 3 461- 3 464.


Last Update: 2008-04-30