|Table of Contents|

Positive Realness of Singularly Perturbed Systems


Research Field:
Publishing date:


Positive Realness of Singularly Perturbed Systems
ZHONG Ning-fan12ZOU Yun1
1.School of Automation,NUST,Nanjing 210094,China;2.College of Information and Electrical Engineering,Shandong University of Science and Technology,Qingdao 266510,China
singular systems singularly perturbed systems positive realness
To discuss the strictly positive realness judgment criteria of singularly perturbed systems,a singular system model is employed,and the existing positive real lemma of singular systems is improved.By applying the implicit function theorem the relationship between the positive realness of singularly perturbed system and that of its limit system is investigated based on the algebraic Riccati equation.Criteria are proposed to judge the positive realness of singularly perturbed system.A numerical example is given to prove the effectiveness of the criteria.The results provide novel criteria for the judgment of the positive realness of singularly perturbed systems under certain conditions.


[1] 许可康. 控制系统中的奇异摄动[M ] . 北京: 科学 出版社, 1986.
[2] Kokotov ic P V. Applications of s ingu lar perturba tion techn iques to contro l prob lem s [ J]. SIAM Rev iew, 1984, 26 ( 4): 501- 550.
[3] 张庆灵, 杨冬梅, 姚波, 等. 广义系统[M ]. 北京: 科学出版社, 2004.
[4] Da i L. S ingu lar con tro l system s [M ]. Ber lin, Germany: Spr inger-V erlag, 1989.
[5] 邹云, 杨成梧. 奇异摄动系统的极限解[ J]. 自动化 学报, 1993, 19( 3) : 356- 360.
[6] 钟宁帆, 邹云. 奇异摄动系统极限解存在的代数判 据[ J] . 控制与决策, 2006, 21( 6): 717- 720.
[7] V igodner A. Lmi its of singularly perturbed control problem s w ith sta tistica l dynam ics o f fast mo tions [ J]. SIAM Journal of Contro lOptmi ization, 1997, 35 ( 1): 1- 28.
[8] Dragan V. Asympto tic expansions fo r game- theoretic Riccati equations and stab ilization w ith disturbance attenuation fo r singularly perturbed systems [ J]. System and Control Letters, 1993, 20 ( 6): 455- 463.
[9] ZhangL, Lam J, Xu S. On po sitive rea lness o f descriptor system s [ J]. IEEE Transactions on C ircu its and System s-?: Fundam enta l Theory and Applications, 2002, 49 ( 3): 401- 407.
[10] Ro lf J, Anders R. Observer-based strict positive rea l feedback contro l system design [ J ]. Automa tica, 2002, 38 ( 9): 1 557- 1 564.
[11] Agathoklis P, Jury E I, M ansourM. The im portance of bounded rea l and po sitive rea l functions in the stability of 2-D system [ A ]. IEEE Interna tiona l Sym posium on C ircuits and System s 1991 [ C] . Singapore: ISCAS, 1991. 124- 127.
[12] Joshi S M. Contro l of large flex ib le space structures [M ]. Ber lin, G erm any: Spr inger-V erlag, 1989.
[13] SunW, Khargoneke r P P, Shim D. So lution to the positive rea l control problem for linear tim e- inv ariant system s [ J] . IEEE T ransactions on Au tom atic Contro ,l 1994, 39 ( 10): 2 034- 2 046.


Last Update: 2008-06-30