|Table of Contents|

Improved Particle Swarm Optimization Algorithm and Its Application in Hydraulic Turbine Governor PID Parameters Optimization

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2008年03期
Page:
274-278
Research Field:
Publishing date:

Info

Title:
Improved Particle Swarm Optimization Algorithm and Its Application in Hydraulic Turbine Governor PID Parameters Optimization
Author(s):
FANG Hong-qing
College of Electrical Engineering,Hohai University,Nanjing 210098,China
Keywords:
particle swarm optimization swarm intelligence hydraulic turbine governor parameters optimization
PACS:
TP273
DOI:
-
Abstract:
An improved particle swarm optimization(PSO) algorithm is presented.Besides the individual best position and the global best position,the swarm average position is introduced in the improved PSO algorithm.Therefore,more information is acquired by particles to adjust their movements.The test results based on three benchmark functions show that the improved PSO algorithm has a good performance on global convergency and convergence precision.The computer simulation results indicate that the application of the improved PSO algorithm in hydraulic turbine governor PID parameters optimization can effectively improve the dynamic performance of hydraulic transients.

References:

[1] Kennedy J, Ebe rhart R. Particle sw arm optim iza tion [ A ]. Proceedings o f the IEEE International Confe r?? ence on Neura l N etworks [ C ]. Perth, Austra lia: IEEE, 1995. 1 942- 1 948.
[2] Parsopoulos K E, VrahatisM N. Recent approaches to g lobal optim ization problem s through partic le swarm optim iza tion[ J]. Natural Com puting, 2002, 1( 2 /3): 235- 306.
[3] Y i D, Ge X. An im proved PSO??based ANN w ith sim?? ulated annealing techn ique [ J ]. Neurocom puting, 2005, 63: 527- 533.
[4] Pav lid is N G, Pa rsopou los K E, VrahatisM N. Com?? puting Nash equilibr ia through computationa l inte lli?? gence me thods[ J]. Journal o f Com puta tiona l and Ap?? pliedM athem atics, 2005, 175( 1): 113- 136.
[5] Costa E F, Lage P L C, B isca iaE C. On the num er i?? ca l so lution and optim iza tion of sty rene po lym er iza tion in tubu lar reactors[ J]. Com puters and Chem ical En?? g ineer ing, 2003, 27 ( 11): 1 591- 1 604.
[6] Kannana S, S lo chana l SM R, Subbaraj P, et a .l Ap?? plica tion o f partic le sw arm optim ization techn ique and its va riants to generation expansion plann ing prob lem [ J]. E lectr ic Power Sy stem s Research, 2004, 70 ( 3): 203- 210.
[7] Zhang X, Yu L, Zheng Y, e t a.l Tw o??stage adaptive PMD compensation in a 10Gbit/ s optical communication system using partic le swarm optmi ization a lgorithm [ J]. Optics Communica tions, 2004, 231( 1 /6): 233- 242.
[8] Eberhart R, Sh i Y. Partic le sw arm optim ization: De?? ve lopm ents, applications and resources[ A]. Proceed?? ings o f the 2001 Congress on Evo lutiona ry Com puta tion [ C]. Seou,l Korea: IEEE , 2001. 81- 86.
[9] Lansberry J E, W ozn iak L. Adaptive hydrogenera to r gove rno r tuning w ith a genetic a lgo rithm [ J]. IEEE Trans Energy Conversion, 1994, 9( 1): 179- 183.
[10] W ork ing g roup on pr ime mover and energy supp ly mod?? e ls for system dynam ic perform ance studies. H ydrau lic turbine and turbine contro l models for system dynam ic studies[ J]. IEEE Trans Pow er System, 1992, 7( 1): 167– 178. 278

Memo

Memo:
-
Last Update: 2008-06-30