|Table of Contents|

CODMn Forecast Based on BP Neural Network at Yuqiao Reservoir in Tianjin

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2008年03期
Page:
376-380
Research Field:
Publishing date:

Info

Title:
CODMn Forecast Based on BP Neural Network at Yuqiao Reservoir in Tianjin
Author(s):
ZHAO YingCUI Fu-yiGUO LiangZHAO Zhi-wei
State Key Laboratory of Urban Water Resource and Environment,Harbin Institute of Technology,Harbin 150090,China
Keywords:
water forecast back propagation neural network Levenberg-Marquardt algorithm early stop method
PACS:
X524
DOI:
-
Abstract:
To insure the safety of drinking water,find out the change current of water quality,and offer scientific methods for managing water quality,the forecast of CODMn is studied based on back propagation(BP) neural network technique at Yuqiao reservoir in Tianjin of PRC.To achieve a higher convergent speed,the forecasting model adopts Levenberg-Marquardt(LM) algorithm,and the model adopts early stop method to improve extended capacity of the model.Sample data of artifical neural network(ANN) are from daily measured values of Yuqiao reservoir from 2003 to 2005.To evaluate veracity of the model roundly,the forecast periods of Yuqiao reservoir are divided into abundant rain period,freezing period and other periods.The effect of the model is reviewed in different periods.The results show the forecast efficiency is the worst in abundant rain period,best in freezing period and the middle in other periods.The whole forecasting effect is good,and the model can be used for guidance in water quality management at Yuqiao reservoir.

References:

[1] 武君. 河流水质模拟预测的常用方法研究与新方 法探索[ D]. 合肥: 合肥工业大学资源与环境工程 学院, 2005. 7- 9.
[2] 张蕾. 城市地下水水质水位预警的研究[ D]. 天 津: 天津大学环境科学与工程学院, 2006. 56- 57.
[3] 树锦. 人工神经网络模型在黄河水质预测中的应 用[ D ]. 南京: 河海大学环境科学与工程学院, 2006. 7- 10.
[4] 刘涛. 水库水质参数预测和富营养化预警[ D] . 天 津: 天津大学环境科学与工程学院, 2005. 21- 29.
[5] M ig liacc io, K W, Chaubey I, H aggard B E. Eva luation of uncertainty propagation into r iver w ater qua lity pred ictions to gu ide futurem on itoring cam pa igns [ J]. Environm enta lM ode lling and So ftwa re, 2007, 22 ( 7): 987- 999.
[6] Ahm et, K, Kadri Y, Osm an, C. Perform ance of two sto chastic approaches for forecasting w ater qua lity and stream flow data from Ye, il?rm ak R iver, Turkey [ J]. Env ironm enta lMode lling and So ftware, 2005, 20 ( 9): 1 195- 1 200.
[7] 庄镇泉, 王熙法. 神经网络与神经计算机[M ]. 北 京: 科学出版社, 1994. 100- 112.
[8] 张宜华. 精通MATLAB5[M ]. 北京: 清华大学出版 社, 1999.
[9] 许东, 吴铮. 基于MATLAB6. x 的系统分析与设 计) ) ) 神经网络[M ]. 西安: 西安电子科技大学出 版社, 2002.
[10] 王青海. BP神经网络算法的一种改进[ J]. 青海大 学学报(自然科学版), 2004, 22( 3): 82- 84.
[11] Joseph H W, Lee Y H, M ikeD. Neural netw ork m odeling of coasta l a lga l b loom s [ J]. Eco log ica lMode-l ing, 2003, 159 ( 2 /3): 179- 201.
[12] 卢金锁. 地表水厂原水水质预警系统研究及应用 [ D]. 西安: 西安建筑科技大学环境与市政工程学 院, 2006. 37- 38

Memo

Memo:
-
Last Update: 2008-06-30