|Table of Contents|

Negotiation Mediation Model Based on Effective Bargaining Zone and Its Solution


Research Field:
Publishing date:


Negotiation Mediation Model Based on Effective Bargaining Zone and Its Solution
HE Zhi-tao1SHANG Wei2YU Bo1XIE An-shi34
1.School of Economics and Management,Harbin Institute of Technology,Harbin 150001,China;2.Academy of Mathematics and Systems Science,Chinese Academy of Sciences,Beijing 100080,China;3.School of Management,Fudan University,200433,China;4.China Huarong Assets Corporation,Beijing 100045,China
negotiation support systems negotiation mediation effective bargaining zone genetic algorithms
A negotiation mediation model is proposed to resolve the conflicts in negotiation support problems.A genetic algorithm(GA) is designed to search the optimal solution,which approaches to the maximization of the product of all parties’ utilities.To prove the effectiveness of the proposed models and algorithms,numerical cases are designed and the results are compared with those of an existing model.The proposed negotiation mediation model and the GA solution based on the effective bargaining zone is proved to be effective in the scenario of various preference structures and contribute to the practical negotiation mediation mechanism design.


[1]Bu iT, ShakunM F. Nego tiation support systems m in i?? track [A ]. Proceedings of the 40th H awa ii In ternation?? a l Con ference on System Sc iences [ C ]. San Franc isco: IEEE Compute r Soc iety Press, 2007. 32- 32.
[2] JarkeM, JelassiM T, ShakunM F. MEDIATOR: To?? wards a nego tiation support system [ J]. European Jour?? na l o fOperational Research, 1987, 31 ( 3): 314- 334.
[3] Sam arasan D. Co llaborative modeling and negotia tion [ A ]. Proceedings o f the ACM SIGO IS and IEEECS TC??OA 1988 Confe rence on O ffice Inform ation System s [ C]. New York: ACM, 1988. 9- 21.
[4] Bui T. Bu ild ing DSS fo r negotia to rs: A three??step de?? sign process [ A]. Proceed ings o f theTwenty??F ifthH a?? w a ii Interna tiona l Conference on System Sc iences [ C]. H aw a i:i IEEE, 1992. 164- 173.
[5] Cooper S. Consensus: M ulti??par ty nego tiation support fo r conflict resolution in concurrent eng ineer ing des ign [ J]. Journa l o f Inte lligentM anufac tur ing, 1998, 9 ( 2): 155- 159.
[6] Su S Y W, H uang Chunbo, H amm er J. A replicab le w eb??based nego tiation serve r for e??comm erce [ A ]. Proceedings of The 33 th H aw a ii Internationa l Con fe r?? ence on System Sc iences [ C]. M au,i H aw a i,i USA: IEEE Com pute r Society, 2000. 212- 221.
[7] 牛晓太, 李印清, 朱付保, 等. 基于代理技术的NSS 设计与实现[ J]. 计算机工程与设计, 2007, 28( 8): 1 953- 1 955.
[8] Lau R T K. Towards a web serv ices and intelligent a?? gents??based nego tiation system fo rB2B e??comm erce [ J]. ElectronicComm erceResearch and Applications, 2007, 6 ( 3): 260- 273.
[9] 王国锋, 井润田. 谈判支持系统国内外研究比较及 展望[ J] . 价值工程, 2004, 8: 9- 13.
[10] A lbrecht C C, Dean D L, H ansen J V. M arketplace and techno logy standards for B2B e??comm erce: Pro?? gress, challenges, and the sta te of the art [ J]. In fo r?? m ation & M anagem ent, 2005, 42 ( 6): 865- 875.
[11] 高伟, 孟波. 基于W eb的谈判支持系统的研究与开 发[ J]. 计算机工程, 2003, 29( 19) : 63- 65.
[12] Nash J F Jr. Equilibrium points in n??person games [ J]. Proceed ings of the National Academy of Sc iences o f the United S ta tes o fAmer ica, 1950, 36 ( 1): 48- 49.
[13] Ho lland J H. Adapta tion in natural and artific ial systems [M ]. Ann Arbor: Un iversity ofM ichigan Press, 1975.
[14] De Jong K A, SpearsW M, Go rdon D F. U sing genetic algo rithm s for concept learn ing [ J]. M ach ineLearn ing, 1993, 13 ( 2/3): 161- 188.
[15] 余有明, 刘玉树, 阎光伟. 遗传算法的编码理论与应 用[ J]. 计算机工程与应用, 2006, 42( 3): 86- 89.
[16] 李玥, 冯玉强, 王衍华, 等. 遗传算法在网上谈判支 持系统中的应用研究[ J]. 系统工程理论与实践, 2002, 22( 6): 87- 92.
[17] 陈菊新, 徐建闽, 辛武平. 基于遗传算法的产品分 配方案研究[ J]. 华南理工大学学报( 自然科学 版) , 2001, 29( 2): 90- 93.
[18] T robe lM, To lzeM. A m atchmaking com ponent for the d iscovery o f agreem ent and negotiation spaces in e lec?? tron ic m arkets [ J]. Group Decision and Negotia tion, 2002, 11: 165- 18.


Last Update: 2012-12-19