|Table of Contents|

Ontology-based Method for Mining Association Rules

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2008年04期
Page:
401-405
Research Field:
Publishing date:

Info

Title:
Ontology-based Method for Mining Association Rules
Author(s):
SHENG Jia-gen12LIU Si-feng1
1.School of Economics and Management,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China;2.School of Economics and Management,Jiangsu University of Science andTechnology,Zhenjiang 212003,China
Keywords:
ontology association rule mining enterprise decision-making
PACS:
TP311.13
DOI:
-
Abstract:
Association rule can be used to direct enterprise business decision-making.In view of the problem of redundant rules caused by support-confidence framework,an association rule mining method and algorithm based on integrated ontology statistical correlation and semantic correlation are discussed.To mine association rules,domain ontology is constructed and integrated by a more general ontology to assist mining firstly,and correlation degree is computed by considering statistical correlation and semantic correlation.Data-driven and user-driven interest measure are used to discharge the uninteresting rules.Compared with the existing method,this method cleans out the redundant rules effectively,and realizes semantic representation of knowledge.Through the research and development of computer aided cardio-vascular disease diagnosing system,the validity and superiority of this method are validated.

References:

[1]杨炳儒. 中国科学技术前沿?? ?? ?? 知识发现进展中 的两大核心问题[M ]. 北京: 高等教育出版社, 2006. 215- 267.
[2] Schuster A, Wolff R, Trock D. A high??performance d is?? tr ibuted algor ithm for m in ing assoc iation rules [ J ]. Know ledge and In form ation Systems, 2004( 8): 291- 308.
[3] Agraw a lR, lm ielinsk iT, Swam i A. M ining association rules between sets of item s in la rge databases [ A ]. Proceedings o f theACM SIGM??OD Conference onM an?? agem ent o f Data [ C]. Wash ing ton D. C. : ACM Press, 1993. 207- 216.
[4] Peng Zh iyong, L i Q ing, Feng L ing, et a.l Using ob?? ject deputym ode l to prepare data for da taw arehous ing [ J]. IEEE Transactions on Know ledge and Data Eng i?? neering ( TKDE ), 2005, 17 ( 9): 1 274- 1 288.
[5] 沈国强, 覃征. 一种新的多维关联规则挖掘算法 [ J]. 小型微型计算机系统, 2006, 27( 2): 291- 294.
[6] Cheung D, LEE S, Kao B. A g eneral incrementa l techn ique for m ain taining d iscove red association ru les [ A]. Proceed ings of the 5th Internationa l Con ference on Da tabase System s for Advanced App lication, DAS?? FAA? 97 [ C] . M elbourne, Austra lia: Wo rld Scientif?? ic Press. 185- 194.
[7] 王旭仁, 许榕生. 基于粗糙集理论的关联规则挖掘 研究及应用[ J]. 计算机工程, 2005, 31( 20): 90- 92.
[8] 陈斌, 倪天倪. 一种基于条件独立性的关联规则过滤 方法[ J]. 计算机工程与应用, 2003, 39( 25): 190- 192.
[9] 邓志鸿, 唐世渭. Onto logy 研究综述[ J] . 北京大学 学报(自然科学版), 2002, 38( 5): 730- 738.
[10] S tude rR, Benjam ins V R, Fense lD. Know ledge eng i?? neer ing, pr incip les and m ethods [ J ]. Data and Know ledge Eng ineering, 1998, 25 ( 1 /2): 161- 197.
[11] 黄伟. 本体构建与语义集成研究[ D ]. 南京: 东南 大学计算机应用专业, 2005.
[12] Kam be rM, H an Jiaw e,i Ch iang J Y. M eta??ru le gu ided m ining of multi??dim ensional assoc ia tion rules using da ta cubes [ A ]. Proceed ing s of 1997 International Con fer?? ence on Know ledge D iscovery and Data M in ing [ C ]. M enlo Pa rk, CA: AAA I Press, 1997. 207- 210.
[13] N ejdlW, O lm ed illa D, W insle ttM. Onto logy??based po licy specification and m anagem ent [ A ]. 2nd Euro?? pean Semantic W eb Conference ( ESWC ), Lecture No tes in C om puter Science [ C ]. H eraklion, Crete, Greece: Springer, 2005. 290- 302.[1]杨炳儒. 中国科学技术前沿?? ?? ?? 知识发现进展中 的两大核心问题[M ]. 北京: 高等教育出版社, 2006. 215- 267.
[2] Schuster A, Wolff R, Trock D. A high??performance d is?? tr ibuted algor ithm for m in ing assoc iation rules [ J ]. Know ledge and In form ation Systems, 2004( 8): 291- 308.
[3] Agraw a lR, lm ielinsk iT, Swam i A. M ining association rules between sets of item s in la rge databases [ A ]. Proceedings o f theACM SIGM??OD Conference onM an?? agem ent o f Data [ C]. Wash ing ton D. C. : ACM Press, 1993. 207- 216.
[4] Peng Zh iyong, L i Q ing, Feng L ing, et a.l Using ob?? ject deputym ode l to prepare data for da taw arehous ing [ J]. IEEE Transactions on Know ledge and Data Eng i?? neering ( TKDE ), 2005, 17 ( 9): 1 274- 1 288.
[5] 沈国强, 覃征. 一种新的多维关联规则挖掘算法 [ J]. 小型微型计算机系统, 2006, 27( 2): 291- 294.
[6] Cheung D, LEE S, Kao B. A g eneral incrementa l techn ique for m ain taining d iscove red association ru les [ A]. Proceed ings of the 5th Internationa l Con ference on Da tabase System s for Advanced App lication, DAS?? FAA? 97 [ C] . M elbourne, Austra lia: Wo rld Scientif?? ic Press. 185- 194.
[7] 王旭仁, 许榕生. 基于粗糙集理论的关联规则挖掘 研究及应用[ J]. 计算机工程, 2005, 31( 20): 90- 92.
[8] 陈斌, 倪天倪. 一种基于条件独立性的关联规则过滤 方法[ J]. 计算机工程与应用, 2003, 39( 25): 190- 192.
[9] 邓志鸿, 唐世渭. Onto logy 研究综述[ J] . 北京大学 学报(自然科学版), 2002, 38( 5): 730- 738.
[10] S tude rR, Benjam ins V R, Fense lD. Know ledge eng i?? neer ing, pr incip les and m ethods [ J ]. Data and Know ledge Eng ineering, 1998, 25 ( 1 /2): 161- 197.
[11] 黄伟. 本体构建与语义集成研究[ D ]. 南京: 东南 大学计算机应用专业, 2005.
[12] Kam be rM, H an Jiaw e,i Ch iang J Y. M eta??ru le gu ided m ining of multi??dim ensional assoc ia tion rules using da ta cubes [ A ]. Proceed ing s of 1997 International Con fer?? ence on Know ledge D iscovery and Data M in ing [ C ]. M enlo Pa rk, CA: AAA I Press, 1997. 207- 210.
[13] N ejdlW, O lm ed illa D, W insle ttM. Onto logy??based po licy specification and m anagem ent [ A ]. 2nd Euro?? pean Semantic W eb Conference ( ESWC ), Lecture No tes in C om puter Science [ C ]. H eraklion, Crete, Greece: Springer, 2005. 290- 302.
[14] 李飞, 高济, 刘柏嵩, 等. 知识管理中语义与关键字 相结合的检索方法. 计算机辅助设计与图形学学 报, 2004, 16( 12) : 1 696- 1 702.
[15] Zhu Junwu, W ang Jiandong, Li B in. W eb serv ices se?? lection based on semantic sim ilarity [ J]. Journa l o f Southeast Un iversity, 2006, 22 ( 5): 297- 301.
[16] 美国国家医学图书馆. ULM s Prog ram, h ttp: / /www. n lm. n ih. gov / resea rch /um ls / [ EB /OL]. 2006- 11.
[17] http: / /eurom ise. vse. cz/ stulong??en/ [ EB /OL]. 2007- 02

Memo

Memo:
-
Last Update: 2012-12-19