|Table of Contents|

State Estimation Model of Fermentation Process Based on PSO-SVR

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2008年04期
Page:
517-521
Research Field:
Publishing date:

Info

Title:
State Estimation Model of Fermentation Process Based on PSO-SVR
Author(s):
XIONG Wei-liXU Bao-guo
School of Communication and Control Engineering,Southern Yangtze University,Wuxi 214122,China
Keywords:
support vector regression state estimation particle swarm optimization fermentation process beta-mannanase
PACS:
TQ920.1
DOI:
-
Abstract:
In view of the hardship to get real-time and on-line biological parameters in fermentation process,a soft sensor model based on support vector machines is established for estimating the biological parameters.The complexity and generalization performance of the support vector regression(SVR) model depend on a good setting of the three parameters ε,c,γ.An algorithm called particle swarm optimization(PSO) is applied to optimize the three parameters synchronously.Based on the proposed method,a PSO-SVR model is developed to estimate the products concentration of beta-mannanase for feedstuff.The control results of fermenter show that the state estimation model based on PSO-SVR has good learning accuracy and generalization performance so as to obtain the real-time and on-line estimation for products concentration of beta-mannanase.

References:

[1] 冯兴杰, 魏新, 黄亚楼. 基于支持向量机回归的旅 客吞吐量预测研究[ J]. 计算机工程, 2005, 31 ( 14): 172- 173.
[2] U stun B, M e lssen W J, Oudenhu ijzenM, et a.l Determ ination o f optim a l support vector reg ression parameters by genetic a lgo rithm s and simp lex optim iza tion [ J]. Ana ly tica Ch im ica Ac ta, 2005, 544 ( 1 - 2 ): 292- 305.
[3] Vapn ik V N. Statistica l learning theory [M ]. New York: JohnW iley & Sons, Inc. , 1998.
[4] Cherkassky V S, M ulier F M. Learning from data: Concepts, theory, and m ethods [M ]. New York: John W iley& Sons, 1998.
[5] Cherkassky V, M a Y Q. Practica l se lection of SVM param eters and noise estim ation fo r SVM regress ion [ J]. Neu ra lNe tw orks, 2004, 17 ( 1): 113- 126.
[6] 熊伟丽, 徐保国. 基于PSO的SVR参数优化选择方 法研究[ J]. 系统仿真学报, 2006, 18 ( 9): 2 442 - 2 446.
[7] Feng Y, H e Z. Optim ization o f ag itation, aeration, and tem perature conditions for m ax im um B-m annanase production [ J]. Enzyme and M icrobia,l 2003, 32 ( 2): 282- 289.
[8] 潘丰. 生化过程智能控制研究[ D] . 无锡: 江南大 学通信与控制工程学院, 2001. 521

Memo

Memo:
-
Last Update: 2012-12-19