|Table of Contents|

Model of Intrusion Tolerant System Based on Improved Neural Networks

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2008年05期
Page:
628-631
Research Field:
Publishing date:

Info

Title:
Model of Intrusion Tolerant System Based on Improved Neural Networks
Author(s):
QIN Hua-wangDAI Yue-weiWANG Zhi-quan
School of Automation,NUST,Nanjing 210094,China
Keywords:
intrusion tolerance neural networks back propagation network
PACS:
TP393.08
DOI:
-
Abstract:
The work states of intrusion tolerant system are classified abstractly through analyzing the two attributes: resource and control.The corresponding safe mechanisms in different work states of the system are given.A model of intrusion tolerant system based on improved back propagation(BP) neural networks is established,the input and output nodes of the BP network are given,and the work principle of the system based on the BP network is described.A typical intrusion tolerant process of the system is described through an example.The experimental results show that the system has a good ability of detecting and bearing the intrusion.

References:

[1] 彭文灵, 王丽娜, 张焕国, 等. 基于角色访问控制的入侵 容忍机制研究[ J]. 电子学报, 2005, 33( 1): 91- 95.
[2] 郭渊博, 马建峰. 入侵容忍的国内外研究现状及所 存在的问题分析[ J]. 信息安全与保密通信, 2005, 7 ( 1): 337- 341.
[3] C astro M, Liskov B. Proactive recovery in a Byzantine- fau lt- to lerant system [ J]. Operating System s Design and Imp,l 2001, 22( 4): 273- 288.
[4] K re id lO P, FrazierT M. Feedback contro l applied to surv ivab ility: a host-based automa tic de fense sy stem [ J] . IEEE T ransactions on Re liab ility, 2004, 53( 1): 148- 166.
[5] Go seva-Popsto janovaK, W ang F, W ang R. Cha racte rizing in trusion tolerant sy stem s using a state transition m ode l[ J]. DARPA Inform a tion Su rv ivability Con fe rence and Exposition, 2001, 2( 1): 211- 221.
[6] 荆继武, 冯登国. 一种入侵容忍的CA方案[ J] . 软 件学报, 2002, 13( 8) : 1 417- 1 422.
[7] 黄耀宇, 李从东. 基于人工神经网络的煤矿安全评 估模型研究[ J]. 工业工程, 2007, 10( 1) : 112- 115.
[8] 周志勇, 唐家益. 基于安全域和可信基的网络容侵系 统模型[ J]. 微计算机信息, 2003, 19( 11): 108- 109.
[9] 崔竞松, 王丽娜, 张焕国, 等. 一种并行容侵系统研 究模型) ) ) RC模型[ J]. 计算机学报, 2004, 27( 4): 500- 506.
[10] 陈科, 许家珆, 程永新. 基于免疫算法和神经网络的 新型抗体网络[ J]. 电子科技大学学报, 2006, 35 ( 5): 804- 840.
[11] 杨忠林, 张静, 田培根. 改进的BP网络及其在电路 故障诊断中的应用[ J]. 船舶电子工程, 2006, 26 ( 6): 103- 106.

Memo

Memo:
-
Last Update: 2012-12-19