|Table of Contents|

Constrained Bearing Only Tracking Particle Filters


Research Field:
Publishing date:


Constrained Bearing Only Tracking Particle Filters
GUO Yan-fen1TAN Xue-qin2
1.College of Information Science and Engineering,Southeast University,Nanjing 210018,China;2.School of Electronic Engineering and Optoelectronic Technology,NUST,Nanjing 210094,China
target tracking Bayesian method constrained bearing only tracking particle filters optimal importance density
This paper studies the design and implementation method of particle filters suitable for the plane maneuvering target’s real time tracking.A general particle algorithm is analyzed by using Bayesian recursive method and a multi-mode model of target tracking is established by using Markov chain method.Aiming at the constrained bearing only tracking(CBOT)’s actual condition,the formula of optimal importance density(OID) used in particle filters is derived.The pseudo code integrating the particle filter algorithm and CBOT theory is obtained.The research and simulation results show the following conclusion: this algorithm avoids the own station’s maneuvering condition when the target motion subjects to some kinds of constraints;it can track arbitrary maneuvering of the target in clutter environment;its location scale and angle are more than the traditional tracking’s;it reduces the particle number and calculation complexity by OID.


[1] ?? Bavencoff F, Vanpeperstraete J M, Le Cadre J P. Constra ined bearings??on ly ta rget m otion ana lysis v ia M arkov cha inM onte Carlo me thods[ J]. IEEE Trans?? actions on Aerospace and E lectronic System s, 2006, 42( 4): 1 240- 1 263.
[2] U lm keM, KochW. Road??map assisted ground mov ing target track ing [ J]. IEEE Transactions on Aerospace and E lectron ic System s, 2006, 42( 4): 1 264- 1 274.
[3] Benavo li A, Ch isc i L, Far ina A, et a.l Know ledg e?? based system form ulti??target track ing in a litto ra l en?? v ironment[ J]. IEEE Transac tions on Aero space and E lec tron ic System s, 2006, 42( 3): 1 100- 1 116.
[4] M orelandeM R, Cha lla S. M anoeuve ring target track?? ing in clu tter using partic le filters[ J]. IEEE Transac?? tions on Aerospace and E lec tron ic System s, 2005, 41 ( 1): 252- 270.
[5] K irubarajan T, Bar Sha lom Y. Probab ilistic data as?? soc ia tion techniques fo r target track ing in c lutter[ J]. Proceedings of the IEEE, 2004, 92( 3): 536- 557.
[6] A rulam palam M S, M aske ll S, Gordon N, et a.l A tutoria l on partic le filters fo r online nonlinea r/non?? Gaussian Bayesian track ing [ J]. IEEE Transactions on Signa l Processing, 2002, 50( 2) : 174- 188.
[7] Doucet A, GodsillS, Andrieu C. On sequentia lM onte Car lo samp lingm ethods for Bayesian filtering[ J]. Sta?? tistics and Com puting, 2000, 10( 3): 197- 208.
[8] Vo B N, M aW K. The Gaussian m ixture probab ility hypo thesis density filter [ J]. IEEE Transactions on S ignal Processing, 2006, 54( 11) : 4 091- 4 104.
[9] 徐毓, 金以慧, 杨瑞娟. 基于强跟踪滤波器的多目标 跟踪方法[ J]. 传感器技术, 2002, 21( 3): 17- 20.


Last Update: 2008-12-30