|Table of Contents|

Exponential Stability and Decentralized Control for Nonlinear Singular Large-scale Systems

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2009年01期
Page:
21-25
Research Field:
Publishing date:

Info

Title:
Exponential Stability and Decentralized Control for Nonlinear Singular Large-scale Systems
Author(s):
WU Jian-cheng1WO Song-lin2LU Guo-ping3
1.School of Information Science and Engineering,Jiangsu Polytechnic University,Changzhou 213164,China;2.School of Electrical and Information Engineering,Jiangsu Teachers University of Technology,Changzhou 213001,China;3.School of Electronics Engineering,Nantong University,Nantong 226007,China
Keywords:
nonlinear singular large-scale systems exponential stability state feedback decentralized control
PACS:
TP13
DOI:
-
Abstract:
This paper discusses the exponential stability and decentralized control for the nonlinear singular large-scale systems.The nonlinearities are functions of time and system state that satisfy Lipschitz constraint straint.A decentralized controller is designed.Based on the fixed-point theorem and linear matrix inequality(LMI),the existence and uniqueness of the solution for the systems are given.A sufficient condition is proposed by Lyapunov function approach,which guarantees the exponential stability for the singular large-scale systems.Furthermore,a parameterized representation of decentralized controller based on state feedback is obtained in terms of the feasible solutions to the LMI.

References:

[ 1] 高志伟, 李光泉, 王江. 广义线性系统的分散控制[ J].控制理论与应用, 1995, 12( 2): 236- 24.

[ 2] 张庆灵. 广义大系统的分散控制与鲁棒控制[M ].西安: 西北工业大学出版社, 1997.
[ 3] Chen Chao- tian, Liu Yong-qing. S tab ility of large-sca lenon linear singular dynam ica l system s and its interconnectingparame ters reg ions[ J]. Advances inM ode llingand Ana lysis C: Sy stem s Analysis, Contro l and DesignS imu lation, CAD. 1999, 53( 1): 39- 47.
[ 4] 姚波, 张庆灵. 具有对称循环结构的广义大系统的最优控制[ J]. 东北大学学报, 2003, 24( 5): 416- 419.
[ 5] 沃松林, 邹云. 一类不确定组合广义大系统的稳定性[ J]. 南京理工大学学报, 2005, 29( 4): 379- 384.
[ 6 ] 袁芳, 孙敏慧, 徐胜元. 一类广义不确定非线性系统的鲁棒镇定) ) ) LM I方法[ J] . 南京理工大学学报( 自然科学版), 2007, 31( 3): 274- 277.
[ 7] LU G P, Dan ie lW C HO, Yeung L F. Genera lizedquadratic stab ility for perturbated s ingular system s[ J].IEEE Transactions on Autom atic Contro,l 2006, 51:818- 823.
[ 8] 沃松林, 邹云. 参数不确定的广义大系统的分散鲁棒镇定控制[ J]. 控制与决策, 2004, 19( 8): 931- 934.
[ 9 ] 沃松林, 史国栋, 邹云. 广义大系统的渐近稳定与镇定[ J] . 电机与控制学报, 2005, 9( 3): 222- 225.

Memo

Memo:
-
Last Update: 2012-11-19