|Table of Contents|

Algorithm of CUKF and Its Application to Mobile Robot Integrated Navigation

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2009年01期
Page:
37-41
Research Field:
Publishing date:

Info

Title:
Algorithm of CUKF and Its Application to Mobile Robot Integrated Navigation
Author(s):
SHI Xing-xi12ZHAO Chun-xia2GUO Jian-hui2
1.School of Sciences;2.School of Computer Science and Technology,NUST,Nanjing 210094,China
Keywords:
unscented Kalman filter mobile robots integrated navigation difference global positioning system dead reckoning
PACS:
TP242
DOI:
-
Abstract:
The algorithm about a constrained unscented Kalman filter(CUKF)is proposed to estimate the localization of the mobile robot.The unscented Kalman filter(UKF) doesn’t compute the Jacobian matrix nor the Hessian matrix when it processes the nonlinear questions and it can decrease effectively the error of nonlinear system caused by the linearization.The algorithm of CUKF takes full advantage of characteristics of the UKF and some restrictions are increased.The road direction of the digital map database in geographic information system(GIS) environment is regarded as the state constrained condition.The nonlinear optimization estimation about DGPS/DR(difference global positioning system/dead reckoning) integrated navigation system can be resolved through the Lagrangian function.Simulation results show that the CUKF can more effectively improve the position precision than the UKF.

References:

[ 1] Huang J, Tan H S. A low-orderDGPS-based vehicle positioning system under urban env ironment[ J]. IEEE /ASME Transactions onM echatron ics, 2006, 11( 5): 567- 575.

[ 2] Q i H onghu,i M oore J B. Direct K alm an filtering approachforGPS / INS integration[ J]. IEEE T ransactionson Aerospace and E lectron ic System s, 2002, 38( 2):687- 693.
[ 3] Huang J, Tan H S. DGPS /INS-based vehicle positioningw ith novel DGPS no ise processing [ A]. Proceed ings o fthe 2006 Am erican Control Conference[ C]. M inneapolis,M innesota, USA: IEEE, 2006. 3966- 3971.
[ 4 ] Rag el B, FarooqM. DGPS aided INS nav igation fo rAUV [ A]. The 47 th IEEE In ternationalM idw est Symposiumon C ircuits and System s[ C]. H irosh im a, Japan:IEEE, 2004. ó 407- ó 410.
[ 5] Julie r S J, Uh lm ann J K. Unscented filtering and nonlinearestim a tion[ J] . Proceedings o f the IEEE, 2004,92( 3): 401- 422.
[ 6] 隋树林, 姚文龙, 赵晓伟. 基于小波-UKF的自主光学导航方法研究[ J]. 系统仿真学报, 2007, 19( 12):2776- 2782.
[ 7] Zhang Pifu, Gu Jason, M ilios E E, e t a.l Nav iga tionw ith IMU /GPS /Dig ital com pass w ith unscented Ka-lm an filter[ A ]. Pro ceedings o f the IEEE Internationa lConference onM echa tron ics& Autom ation[ C]. N iagaraFa lls, C anada: IEEE, 2005. 1497- 1502.
[ 8] Ashokara j I, Tsourdos A, S ilson P, et a.l Sensor basedrobo t loca lization and nav igation: Using interva l analysisand unscented Kalm an filter[ A ]. Proceeding s o f IEEE /RSJ International Conference on Intelligent Robo ts andSystem s[ C]. Senda,i Japan: IEEE, 2004. 7- 12.
[ 9] 张卫明, 张继惟, 范子杰, 等. UKF方法在惯性导航系统初始对准中的应用研究[ J]. 系统工程与电子技术, 2007, 29( 4): 589- 592.
[ 10] Panzieri S, Pascucc i F, U liv i G. An outdoor nav igationsystem usingGPS and inertia l platform [ J]. IEEE /ASMETransactions onMechatronics, 2002, 7( 2): 134- 142.
[ 11] 张红梅, 刘胜, 张晓宇. 一种车载组合导航系统的联邦滤波新算法[ J]. 中国惯性技术学报, 2006, 14( 6):30- 33.
[ 12] 刘健, 刘忠. UKF算法在纯方位目标运动分析中的应用[ J]. 南京理工大学学报(自然科学版), 2008,32( 2): 222- 226.
[ 13] Ch iang Y T, W ang L S, Chang F R, e t a.l Constrainedfiltering m ethod for attitude dete rm ina tion us ingGPS and gy ro [ J]. IEE Proceed ing s) Radar, Sonarand N av ig ation, 2002, 149( 5): 258- 264.
[ 14] W ang L S, Ch iang Y T, Chang F R. Filtering m ethodfor nonlinear system s w ith constrain ts[ J] . IEE Proceeding s) Contro l Theory and App lica tions, 2002,149( 6): 525- 531.
[ 15] Smi on D, Li Chia T ien. Kalm an filter ing w ith state equality constraints[ J]. IEEE Transactions on Aerospaceand E lectronic Systems, 2002, 38( 1): 128- 136.

Memo

Memo:
-
Last Update: 2012-11-19