|Table of Contents|

Comparison of Methods for Estimating Vehicle Side Slip Angle

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2009年01期
Page:
122-126
Research Field:
Publishing date:

Info

Title:
Comparison of Methods for Estimating Vehicle Side Slip Angle
Author(s):
LIN FenZHAO You-qun
Department of Automotive Engineering,Nanjing University of Aeronautics andAstronautics,Nanjing 210016,China
Keywords:
vehicles side slip angles radial basis functions neural network adaptive Kalman filter state estimation
PACS:
U461.6
DOI:
-
Abstract:
Aiming at the problem that vehicle side slip angles are difficult to measure directly,a radial basis function(RBF) based neural network method is proposed to estimate side slip angles combined with driver-vehicle closed-loop system.Vehicle side slip angle is considered as mapping of time series of yaw rate and lateral acceleration.A uniform design project is used to select training samples,and the relationship of the three state parameters is established through neural network.An improved adaptive Kalman filter algorithm is designed to estimate vehicle side slip angles in the same road input.The two methods are compared based on full vehicle test: the average error and the standard deviation of RBF neural network method is 0.046 333°and 0.057 822° respectively.The average error and the standard deviation of Kalman filter method is 0.062 745°and 0.089 241° respectively.The conclusions can provide theoretic direction for design of estimator in vehicle stability control system.

References:

[ 1] Akitaka N. Developm ent of veh icle stability contro lbased on veh icle sideslip ang le estim ations[ A ]. SAEPaper[ C]. W arrenda le, USA: SAE, 2001.

[ 2] Sh inm oto Y, Takag i J, Egawa K, et a.l Road surfacerecogn ition sensor using an optical spatia l filter [ A ].Proceedings o f Conference on Intelligent Transpo rtationSy stem s[ C]. Boston: IEEE, 1997. 1 000- 1 004.
[ 3] A rndt C, Ka ridas J, Busch R. Estima ting non-m easuredveh ic le sta tes w ith an extended linearised Ka-lm an filter [ J] . Rev iew of Autom otive Eng inee ring,2005, 26( 1): 91- 98.
[ 4] Joanny S, A li C. V irtual sensor: Application to vehiclesideslip angle and transversal forces[ J]. IEEE Transactionson IndustrialE lectron ics, 2004, 51( 2): 278- 289.
[ 5] 施树明, LupkerH, B remm er P. 基于模糊逻辑的车辆侧偏角估计方法[ J]. 汽车工程, 2005, 27 ( 4 ):426- 430.
[ 6] 林棻, 赵又群. 基于遗传算法的驾驶员- 汽车闭环系统行驶方向稳定性研究[ J] . 机械科学与技术,2006, 25( 10): 1 151- 1 153.
[ 7] 楼顺天, 施阳. 基于MATLAB 的系统分析与设计——神经网络[M ]. 西安: 西安电子科技大学出版社, 1998.
[ 8] 方开泰, 马长兴. 正交与均匀设计[M ] . 北京: 科学出版社, 2001.
[ 9] 宋文尧, 张牙. 卡尔曼滤波[M ]. 北京: 科学出版社, 1988.
[ 10] 邓自立. 自校正滤波理论及其应用——现代时间序列分析方法[M ]. 哈尔滨: 哈尔滨工业大学出版社, 2003.

Memo

Memo:
-
Last Update: 2012-11-19