|Table of Contents|

Novel Blind Source Separation Algorithm Based on Array Constructure

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2009年02期
Page:
168-171
Research Field:
Publishing date:

Info

Title:
Novel Blind Source Separation Algorithm Based on Array Constructure
Author(s):
FU Wei-hong1YANG Xiao-niu2LIU Nai-an1ZENG Xing-wen1
1.State Key Laboratory of Integrated Services Networks,Xi’dian University,Xi’an 710071,China;2.National Laboratory of Information Control Technology for Communication System,Jiangnan ElectronicCommunications Research Institute,Jiaxing 314033,China
Keywords:
blind signal processing blind source separation unitary linear array
PACS:
TN911.7
DOI:
-
Abstract:
To improve the separation performance of the blind source separation algorithm in array signal processing,a novel separation algorithm based on array constructure is presented here.The basic idea of the algorithm is that the mixing matrix is estimated by using the available blind source separation algorithm(i.e.EASI or FastICA).The mixing matrix is reconstructed according to the estimated mixing matrix and the characteristic of the unitary linear array.This reconstructed mixing matrix can be used to revise the separation matrix and improve the performance of the algorithm.Simulation results show that the average interference signal ratio of EASI-1 algorithm presented here is lower 7.5 dB than that of the EASI algorithm,and that of the FastICA-1 is lower 4.3 dB than that of the FastICA algorithm.

References:

[ 1] 付卫红, 杨小牛, 刘乃安, 等. 基于概率密度估计盲分离的通信信号盲侦察技术[ J]. 华中科技大学学报, 2006, 34( 10): 24- 27.
[ 2] 丛丰裕, 雷菊阳, 许海翔, 等. 在线增强型复值混合信号盲分离算法研究[ J]. 西安交通大学学报, 2006, 40( 9) : 1070- 1073.
[ 3] 傅予力, 沈轶, 谢胜利. 基于规范高阶累积量的盲分离算法[ J]. 应用数学, 2006, 19( 4): 869- 876.
[ 4] W ang Zhenl,i Zhang Xiongwe ,i Cao T ieyong. A new blind source separation algor ithm based on second-orde r statistics fo rTITO [ A]. LectureNotes In Com puter Science[ C]. H e idelberg: Spr ing er-Ve rlag, 2006. 29 - 34.
[ 5] TaoH uan, Zhang Jianyun, Yu Lin. A new step-adaptive natural gradient algorithm for blind sou rce separation[ A ]. Lecture Noted in Com puter Sc ience [ C ]. H e ide lberg: Spr inge r-Ver lag, 2006. 35- 40.
[ 6] Cardoso J F. Equivariant adaptive source separation [ J ]. IEEE Trans on S igna l Processing, 1996, 44 ( 12): 3017- 3029.
[ 7] H yvarinen A. Fast and robust fix ed-po in t a lgor ithm s for independent component analysis[ J]. IEEE T rans on Neura lNe tw orks, 1999, 10( 3) : 626- 634.
[ 8] B ingham E, H yvar inen A. ICA o f comp lex va lued signa ls: a fast and robust de flationary a lgo rithm [ A]. International Jo int Conference on N eural N etworks[ C]. W ashing ton: Institute o f Electrical and E lectronics Eng ineers Computer Soc ie ty, 2000. 357- 362.
[ 9] B ingham E, H yvarinen A. A fast fixed-po int a lgo rithm fo r independent com ponent ana lysis of com plex va lued signa ls[ J]. Inte rnational Journa l o f Neura l System s, 2000, 10( 1) : 1- 8.
[ 10] C ichocki A, Am ar i S. Adap tive b lind signa l and im age pro cessing[M ]. N ew Yo rk: John W iley and Sons, 2002. 103- 103.

Memo

Memo:
-
Last Update: 2012-11-19