|Table of Contents|

Algorithm for Synthesizing Large-scale Virtual Terrain from Images Using Radially Weighted Blending

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2009年04期
Page:
438-443
Research Field:
Publishing date:

Info

Title:
Algorithm for Synthesizing Large-scale Virtual Terrain from Images Using Radially Weighted Blending
Author(s):
PANG Ming-yong12ZHAO Rui-bin12
1.Department of Educational Technology,Nanjing Normal University,Nanjing 210097,China;2.National Laboratory on Machine Perception,Beijing University,Beijing 100871,China
Keywords:
terrain synthesis image blending virtual reality digital elevation models
PACS:
TP391.9
DOI:
-
Abstract:
A novel algorithm to synthesize large-scale virtual terrains from a set of images is presented based on digital image processing technologies and radially weighted blending method.The algorithm first creates standardized terrain-blocks from the images,and smoothes the blocks by employing fast Fourier transform and Butterworth’s low-pass filter.A radial weight defined on each block,which is utilized to synthesize four local neighboring blocks to a single blended area,is subsequently constructed for each block.As a result,a complete and smooth large-scale terrain can be obtained by blending operators with the radial weights.The algorithm also provides users a method to control the terrains effectively by adjusting several control parameters.Experimental results show that the algorithm can generate terrains with various scales and styles automatically,fast and effectively.

References:

[ 1] Parry SH. The generation anduse of parameterized terrain in landcombat simulation[A]. Proc of the 9th Conference onWinter Simulation Conference[ C]. Maryland, USA: Gaitherburg, 1977. 422-431.
[ 2] SaundersRL. Terrainosaurus: Realistic terrain syn-thesisusing genetic algorithms[ D]. Dallas, USA: TexasA&MUniversity, 2006.
[ 3] QlinksMediaGroup. Geo CommunityWebsite[OL]. http: //www. geocomm. com/. 23, Nov, 2006.
[4] KarkeeM, KusanagiM, StewardBL. Fusionof opt-i cal and InSARDEMs: improving the quality of free data[A]. The 2006AmericanSociety ofAgricultural andBiologicalEngineers, Annual InternationalMee-t ing[ C]. Portland, Oregon: IEEEPress, 2006. 2348 -2350.
[ 5] TaudH, Parrot JF, AlvarezR. DEM generationby contour line dilation[ J]. Computers&Geosciences, 1999, 25( 7): 775-783.
[ 6] Mandelbrot B. The fractal geometry of nature[M]. NewYork: WHFreeman, 1982.
[ 7] Lewis J P. Generalized stochastic subdivision[ J]. ACMTransactions onGraphics, 1987, 6( 3): 167 - 190.
[ 8] Szeliski R, Terzopoulos D. From splines to fractals [ J]. Computer Graphics, 1989, 23( 3): 51- 60.
[ 9] FournierA, FusselD, Carpenter L. Computer render-ing of stochasticmodels[ J]. ACMCommunications, 1982, 25(6): 371- 384.
[ 10] VossRF. Randomfractal forgeries[A]. Fundamental algorithms for computer graphics[M]. Berlin: Spring-er, 1985.
[ 11] EbertDS, MusgraveFK, PeachyD, et a.l Texturing andmodeling: Aprocedural approach[M]. SanFran-sisco: MorganKaufmann, 2002.
[ 12] KelleyAD, MalinMC, NielsonGM. Terrainsimu-lationusing amodel of streamerosion[ J]. Computer Graphics, 1988, 22( 4): 263-269.
[ 13] MusgraveFK, KolbCE, Mace RS. The synthesis andrendering of erodedfractal terrains[ J]. Computer Graphics, 1989, 23( 3): 41- 50.
[ 14] Nagashima K. Computer generation of eroded valley andmountain terrains[ J]. Visual Computer, 1997, 13( 9-10): 456- 464.
[ 15] BenesB, ForsbachR. Layereddata representation for visualsimulationof terrain erosion[ A]. Proc of the 17thSpring Conference onComputer Graphics[ C]. Washington: IEEEComputer Society, 2001. 80- 85.
[ 16] ZhouHoward, Sun Jie, TurkG, et a.l Terrain syn-thesis fromdigital elevationmodels[ J]. IEEETrans-actions on Visualization and Computer Graphics, 2007, 13( 4): 834-84.

Memo

Memo:
-
Last Update: 2012-11-19