|Table of Contents|

Dynamical Storage-deletion Algorithm for Gaseous Detonation Modelling

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2009年05期
Page:
576-580
Research Field:
Publishing date:

Info

Title:
Dynamical Storage-deletion Algorithm for Gaseous Detonation Modelling
Author(s):
DONG GangFAN Bao-chun
National Key Laboratory of Transient Physics,NUST,Nanjing 210094,China
Keywords:
explosion mechanics dynamical storage dynamical deletion chemical reactions detonation waves numerical simulation
PACS:
O381
DOI:
-
Abstract:
A dynamical storage-deletion algorithm of database for reducing computational cost is proposed to solve the stiff chemical reaction source term with time-consuming by direct integration.The algorithm is examined in computations of one-dimensional and two-dimensional gaseous detonations,respectively.Computational results show that the algorithm can not only satisfy the requirements of computational accuracy,but also relax the stringent limitation of the computer memory occupancy.For the one-dimensional detonation,the speedup factor of the computations using dynamical storage-deletion algorithm increases with the enlargement of the database size,and the maximum speedup factor approaches six.For the two-dimensional detonation induced by shock wave focusing,the speedup factor is 2.54 when the table size is no more than 1 000 MB.The algorithm proposed here shows good generalization and advantage in applications of transient reacting flow simulations.

References:

[ 1] Sung CJ, LawCK, ChenJY. Anaugmentedreduced mechanism for methane oxidation with comprehensive global parametric validation [ J]. Proceedings of the CombustionInstitute, 1998, 27(1): 295-304.
[ 2] MassiasA, DiamantisD, MastorakosE, et a.l Ana-l gorithmfor the constructionof global reducedmecha-nismswith CSP data [ J]. Combustion and Flame, 1999, 117( 4): 685- 708.
[ 3] VaratharajanB, PetrovaM, WilliamsFA, et a.l Two-stepchemica-lkinetic descriptions for hydrocarbon-oxy-gen-diluent ignition and detonation applications [ J]. Proceedingsof theCombustionInstitute, 2005, 30(2): 1869- 1877.
[ 4] TonseSR, MoriartyNW, FrenklachM, et a.l Com-putational economy improvementsinPRISM[ J]. Inter-national Journal of Chemical Kinetics, 2003, 35( 9): 438-452.
[ 5] PopeSB. Computationally efficient mi plementationofcom-bustionchemistry using in situ adaptive tabulation [ J]. CombustionTheory andModelling, 1997, 1( 1): 41-63.
[ 6] 董刚, 范宝春,朱旻明, 等. 动态存储方法在气相爆轰波数值模拟中的应用[ J]. 爆炸与冲击, 2008, 28( 1): 1- 7.
[ 7] HindmarshAC. ODEPACK: asystematizedcollection ofODEsolvers[A]. ScientificComputing [ C]. Am-sterdam: North-Holland, 1983. 55- 64.
[ 8] LevequeRJ. Wavepropagationalgorithms formultid-i mensionalhyperbolic systems[ J]. Journal ofCompu-tationalPhysics, 1997, 131( 2): 327- 353.
[ 9] Kee R J, Grcar JF, SmookeMD, et a.l AFortran programfor modeling steady laminar one-dimensional premixedflames [R]. Albuquerque: SandiaNational Laboratory, SAND85-8240, 1985.
[ 10] LiangSM, WuLN, HsuRL. Numerical investigation of axisymmetric shockwave focusing over paraboloidal reflectors [ J]. ShockWaves, 1999, 9( 6): 367- 379.
[ 11] GelfandBE, KhomikSV, BartenevAM, et a.l De-t onation and deflagration initiation at the focusing of shockwaves in combustible gasmixture [ J]. Shock Wave, 2000, 10( 3): 197- 204.
[ 12] DongG, FanB, Ye J, et a.l Experimental investiga-tion and validation of explosion suppression by inert particle in large-scale duct [ J]. Proceedings of the CombustionInstitute, 2005, 30(2): 2361-2368.
[ 13] 于陆军, 范宝春,董刚, 等. 单循环脉冲爆轰发动机的数值模拟[ J]. 南京理工大学学报, 2006, 30( 3): 253-256.

Memo

Memo:
-
Last Update: 2012-11-19