|Table of Contents|

Estimation Error Analysis on Optic-electric Tracking System with Intermittent Observations


Research Field:
Publishing date:


Estimation Error Analysis on Optic-electric Tracking System with Intermittent Observations
CHEN Li1XU Zhi-gang12SHENG An-dong1
1.School of Automation,NUST,Nanjing 210094,China;2.School of Science,Huaihai Institute of Technology,Lianyungang 222005,China
intermittent observations optic-electric tracking system error analysis Riccati equation Cramer-Rao lower bounds
In order to evaluate the tracking performance of tracking systems with intermittent observations,a modified unbiased converted measurement Kalman Filtering(UCMKF) algorithm is presented by means of projection theorem.A sufficient condition for uniform boundedness of the average of estimation error covariance,and a group of recursive upper and lower bounds of the average Cramer-Rao low bounds(CRLB) of tracking systems are obtained using a modified Riccati equation and a modified CRLB.Monte-Carlo simulation results show that the recursive upper and lower bounds are close to the average CRLB of tracking systems as the sample-collecting time increases.


[ 1] HanCZ, DuanZS, LiXR. Commentson/ unbiased convertedmeasurements for tracking0 [ J]. IEEE Transactions on Aerospace and Electronic Systems, 2004, 40( 4): 1374- 1377.
[ 2] Tichavsky P, MuravchikCH, NehoraiA. Posterior Cra-mer-Rao bounds for discrete-tmi e nonlinear filtering[ J]. IEEETransactions onSignal Processing, 1998, 46( 5): 1386-1396.
[ 3] FarinaA, Ristic B, TimmoneriL. Cramer-Rao bound for nonlinear filteringwithand its applicationto target tracking[ J]. IEEETransactionsonSignalProcessing, 2002, 50( 8): 1916- 1924.
[ 4] HernandezM, RisticB, FarinaA, et a.l A compar-i sonof two Cramer-Rao bounds for nonlinear filtering with[ J]. IEEETransactions on Signal Processing, 2004, 52( 9): 2361- 2369.
[ 5] 许志刚, 盛安冬, 郭治. 基于不完全量测下离散线性滤波的修正Riccati方程[ J]. 控制理论与应用, 2009, 26( 6): 673-677.
[ 6] SinopoliB, SchenatoL, FransceschettiLM, et a.l Ka-l man filtering with intermittentobservations[ J]. IEEE TransactionsononAutomaticContro,l 2004, 49(9): 1453 -1464.
[ 7] BoersY, DriessenH. ResultsonthemodifiedRiccati equation: target tracking applications [ J]. IEEE Transactions onAerospace and Electronic Systems, 2006, 42( 1): 379- 384. [ 8] Bar-ShalomY, Li X R, KirubarajanT. Estimation withapplications to tracking andnavigation[M]. New York: Wiley, 2001.


Last Update: 2012-11-19