|Table of Contents|

Prediction of Biodegradability of Substituted Phenols and Benzoic Acids with Novel Molecular Connectivity Index and Artificial Neural Network

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2009年05期
Page:
700-706
Research Field:
Publishing date:

Info

Title:
Prediction of Biodegradability of Substituted Phenols and Benzoic Acids with Novel Molecular Connectivity Index and Artificial Neural Network
Author(s):
FENG Chang-jun1DU Xi-hua1MU Lai-long2
1.School of Chemistry and Chemical Engineering,Xuzhou Institute of Technology,Xuzhou 221008,China;2.School of Chemistry and Chemical Engineering,Xuzhou Normal University,Xuzhou 221116,China
Keywords:
molecular connectivity index substituted phenol substituted benzoic acid biochemical oxygen demand artificial neural network quantitative structure-biodegradability relationship
PACS:
X172;X592
DOI:
-
Abstract:
On the basis of the revision of Kier and Hall’s molecular connectivity index and conjugation matrix,a novel molecular connectivity indexmKvt is defined and calculated for 30 substituted phenol and benzoic acid molecules in this paper.The quantitative structure-biodegradability relationship(QSBR) model between biochemical oxygen demand(BOD) and 2Kvp,5Kvp for 25 organic pollutants among above molecules is developed by Leaps-and-Bounds regression(LBR),the traditional correlation coefficient R2,the cross-validation correlation coefficient Q2 of leave-one-out(LOO) and Kubinyi function(FIT) are 0.818,0.776 and 3.410,respectively.The result demonstrates that the model is highly reliable and has good predictive ability from the point of statistics.The model shows that the dominant influencing factors of BOD are the electronic effects of substituents and the space factors of molecule: the flexibility and the puckered degree of molecules.The two structural parameters are used as the input neurons of the artificial neural network,and a 2∶5∶1 network architecture is employed.A satisfying QSBR model can be constructed with the back-propagation algorithm,with the correlation coefficient R2 and the standard errors being 0.967 and 3.688,respectively,showing that the relationship between BOD and the two structural parameters has a good nonlinear correlation.The results show that the new molecular connectivity index have good rationality and efficiency for the biochemical oxygen demand of organic compounds.It can be expected that the mKvt will be used widely in quantitative structure-property/activity relationship research.

References:

[ 1] 秦正龙, 冯长君. QSAR法研究取代苯酚的生物活性[ J]. 环境科学与技术, 2006, 29(5): 7-10.
[ 2] 王连生. 有机污染化学[M]. 北京: 化学工业出版社, 2004. 219- 244.
[ 3] 赵元惠, 杨邵贵. 松花江中取代苯酚和取代苯胺类的生物降解性及QSBR研究[ J]. 环境科学学报, 2002, 22( 1): 45-50.
[ 4] 陈艳. 分子键连接性指数及其应用[ J]. 南京理工大学学报, 2005, 29( 5): 594- 597.
[ 5] 堵锡华. 基团距离参数和连接性指数对烷烃折光指数的拓扑研究[ J]. 南京理工大学学报, 2006, 30( 1): 106-109.
[ 6] 谷成刚, 蒋新, 卞永荣, 等. 基于DFT的二口恶口英脂-水分配系数QSPR研究[ J]. 环境科学, 2008, 29( 5): 1330- 1335.
[ 7] 冯长君, 沐来龙,杨伟华, 等. 有机污染物的生物富集因子与拓扑指数的数学模型[ J]. 物理化学学报, 2008, 24( 6): 1053-1057.
[ 8] LiY, XiD.l Quantitative structure-activity relationship study onthebiodegradationof aciddyestuffs[ J]. Journal ofEnvironmental Sciences, 2007, 19: 800-804.
[ 9] 瞿福平, 张晓健,何苗, 等. 氯代芳香化合物生物降解性能与其化学结构的相关性[ J]. 环境科学, 1998, 19( 6): 26-28.
[ 10] 张锡挥. 高等环境化学与微生物学原理及应用[M]. 北京:化学工业出版社, 2001. 18-19, 87-97.
[ 11] LuGH, WangC, YuanX, eta.l QSBRstudy of sub-stitutedphenolsandbenzoic acids[ J]. Journal of En-vironmentalSciences, 2003, 15( 1): 88- 91.
[ 12] 黄俊, 余刚, 王溢磊, 等. 用量子化学方法预测PC-DFs的Ah受体结合能力( 1)-神经网络模型[ J]. 南京理工大学学报, 2003, 27( 6): 709-714.
[ 13] Kier LB, HallLH. Molecular Connectivity inStruc-ture-activityAnalysis[M]. England: ResearchStudies Press, 1986. 82.
[ 14] Chora?zewskiM, GoralskiP, TkaczykM. Heat capac-i ties of 1-chloroalkanes and 1-bromoalkaneswithin the temperature range from284. 15Kto353. 15K. agroup additivity and molecular connectivity analysis[ J]. JChemEngData, 2005, 50(2): 619-624.
[ 15] WienerH. Structural determinationof parafflnboihing points[ J]. JAmChemSoc, 1947, 69( 1): 17- 20.
[ 16] RandicM. OnCharacterizationofmolecular branch-ing[ J]. JAmerChemSoc, 1975, 97( 23): 6609-6615.
[ 17] DowdyDL, MckoneTE, HsiehDPH. Predictionof chemical biotransfer of organic chemicals fromcattle diet into beefandmilkusing themolecular connectiv-i ty index[ J]. Environ SciTechno,l 1996, 30( 3): 984- 989.
[ 18] RandicM, PompeM. The variablemolecular descrip-torsbasedondistance relatedmatrices[ J]. JChemInf Comput Sc,i 2001, 41( 3): 575- 581. [ 19] MuL L, Feng CJ, HeHM. Modeling diamagnetic susceptibilitiesoforganic compoundswithanovelcon-nectivity index [ J]. Ind Eng Chem Res, 2008, 47( 7): 2428-2433.
[ 20] LierLB, HallLH. Structure-activityStudiesonhalluc-i nogenic amphetaminesusingmolecular connectivity[ J]. Journal of Medicinal Chemistry, 1977, 20( 12): 1631 -1636.
[ 21] Saiz-UrraL, GonzaezMP, TeijeiraM. 2D-autocorre-lationdescriptors for predicting cytotoxicity ofnaphtho-quinone ester derivatives against oral human epider-moidcarcinoma[ J]. Bioorganic andMedicinalChem-istry, 2007, 15: 3565-3571.
[ 22] Saiz-UrraL, GonzaezMP, TeijeiraM. QSAR studies about cytotoxicity of benzophenazineswithdual inhib-i tion toward both topoisomerasesÑ andÒ : 3D-MoRSE descriptorsand statistical considerations about variable selection[ J]. Bioorganic andMedicinal Chemistry, 2006, 14: 7347-7358.
[ 23] 许禄, 邵学广. 化学计量学方法[M]. 北京: 科学出版社, 2004. 441.
[ 24] YangHW, JiangZP, ShiSQ. Anaerobicbiodegrad-ability of aliphatic compounds and their quantitative structurebiodegradability relationship[ J]. Science of theTotalEnvironment, 2004( 322): 209- 219.

Memo

Memo:
-
Last Update: 2012-11-19