|Table of Contents|

ESPRIT-based Algorithm for DOA Estimation in Arbitrary Distribution Impulsive Noise Environment


Research Field:
Publishing date:


ESPRIT-based Algorithm for DOA Estimation in Arbitrary Distribution Impulsive Noise Environment
GU ChenHE JinWANG Ke-rangZHU Xiao-hua
School of Electronic Engineering and Optoelectronic Technology,NUST,Nanjing 210094,China
impulsive noise direction-of-arrival estimation fractional lower order moments estimation of signal parameters via rotation invariant technique algorithm infinite-norm normalization
To solve the problem of performance degradation of traditional direction-of-arrival(DOA) estimation in impulsive noise environments,this paper proposes a new estimation of signal parameters via rotation invariant technique algorithm based on infinite-norm normalization—Inf-ESPRIT algorithm for estimating DOA in arbitrary unknown impulsive noise environment.This new algorithm normalizes each sensor-array snapshot’s spatial data vector by its infinity-norm,then constructs a pseudo-covariance matrix out of the impulsive noise impaired data and analyzes its characteristics.The ESPRIT algorithm is applied in the pseudo-covariance matrix to yield DOA estimates.The proposed Inf-ESPRIT algorithm outperforms the customary fractional lower order moment ESPRIT(FLOM-ESPRIT) algorithm with the following advatages: applicable to a wider class of heavy-tailed impulsive noises;requiring no prior information or estimation of the effective characteristic exponents of the impulsive noises;offering better estimation accuracy.Computer simulations are conducted to verify the efficiency of the proposed algorithm.


[ 1]  Krmi H, VibergM. Two decadesofarraysignalprocessing research[ J]. IEEESignalProcessMagazine, 1996, 13(4): 67-94.
[ 2] SchmidtRO. Multiple emitter locationandsignal pa-rameter estimation[ J]. IEEETransonAntennasProp-agation, 1986, 34(3): 276- 280.
[ 3] RoyR, KailathT. ESPRIT-Estmi ationof signal parame-tersvia rotational invariance techniques[ J]. IEEETrans onAcoustics, Speech andSignal Processing, 1989, 37 (7): 984-995.
[ 4] 赵军,是湘全,谷亚林,等. 接收阵列天线的时-空二维谱估计[ J]. 南京理工大学学报(自然科学版), 2004, 28( 5): 511-515.
[ 5] FieldEC, LewinsteinM. Amplitude-probability distr-i butionmodel for VLF/ELF atmosphericnoise[ J]. IEEE TransonCommunications, 1978, 26( 1): 83-87.
[ 6] ShindeMP, Gupta SN. Signal detection inthepres-enceofatmospheric noise intropic[ J]. IEEETranson Communications, 1974, 22( 8): 1055- 1063.
[ 7] BouvetM, SchwartzSC. Comparisonof adaptive and robust receivers for signal detection inambient under-water noise[ J]. IEEETrans on Acoustics, Speech andSignal Processing, 1989, 37( 5): 621-626.
[ 8] ShaoM, NikiasCL. Signal processing withfractional lower ordermoments: Stableprocessesandtheir appl-i cations[ J]. Proceedingsof the IEEE, 1993, 81( 7): 986-1010.
[ 9] TsakalidesP, NikiasCL. Maximumlikelihoodlocal-i zationof sources innoisemodeledas a stable process [ J]. IEEE Trans on Signal Processing, 1995, 43 ( 11): 2700- 2713.
[ 10] Tsakalides P, Nikias CL. The robust covariation-basedMUSIC( ROC-MUSIC) algorithmfor bearing es-timation in impulsive noise environments[ J]. IEEE Trans on Signal Processing, 1996, 44( 7): 1623 - 1633.
[ 11] LiuT H, Mendel JM. A subspace-based direction finding algorithmusing fractional lower order statistics [ J]. IEEETrans on Signal Processing, 2001, 49 ( 8): 1605- 1613.
[ 12] 吕泽均, 肖先赐. 基于分数阶矩的测向方法研究 [ J]. 电波科学学报, 2002, 17( 12): 561-564.
[ 13] 吕泽均,肖先赐. 冲击噪声环境中基于子空间的测向算法研究[ J]. 航空学报, 2003, 24( 2): 174-177.
[ 14] He J, Liu Z, Wong K T. Snapshot-instantaneous  normalization against heavy-tail noise[ J]. IEEETrans on Aerospace and Electronic Systems, 2008, 44(3): 1221-1227.
[ 15] He J, LiuZ. Linearly constrainedminmi um-normalised variance beamforming against heavy-tailed mi pulsive noise of unknownstatistics[ J]. IETRadar, Sonar Nav-i gation, 2008, 2(6): 449-457.


Last Update: 2012-11-19