|Table of Contents|

Optimal Design of Electrode Structure of QCM Based on Finite Element Analysis


Research Field:
Publishing date:


Optimal Design of Electrode Structure of QCM Based on Finite Element Analysis
JIANG Hai-fengBO Yu-ming
School of Automation,NUST,Nanjing 210094,China
quartz crystal microbalance thickness-shear-mode vibration machine-electricity coupling electrode structure finite element energy trapping
An optimal design method of electrode structure based on finite element analysis is proposed to solve the problem that some designs of electrode structures can destroy the singularity of the thickness-shear-mode vibration of quartz crystal microbalance(QCM).This method calculates true parameters of QCM through three-dimensional analysis of machine-electricity coupling.This paper makes a three-dimensional model for QCM and analyzes directly the coupled phenomenon of the structural and electric fields of QCM with finite element analysis software ANSYS10.0.Through analyzing the convergence of the resonant frequency of QCM,the correctness of the finite element analysis is proved.The influence of different sizes of electrode on vibration of QCM and an optimal size of electrode is discovered,namely thickness of 100 nm and radius of 3 mm.The design of mesa on crystal plate is provided to solve the problem that the energy trapping is not good enough.This design proves valid based on finite element calculation and an optimal size of the mesa is given,namely height of 9.8 μm.


[ 1] BartoszW, PakpumS, TakamichiN. Pegylated lipids ascoatingsforQCModor-sensors[ J]. SensorsandAc-tuators, B: Chemica,l 2007, 121(2): 538- 544.
[ 2] Zhang Z, ChenH, Zhong J, et a.l ZnOnanotip-based QCMbiosensors[A]. Proceedingsof the IEEEInterna-tional Frequency Control Symposium and Exposition [C]. Miam,i FL, USA: IEEEUltrasonics, Ferroelec-trics andFrequencyControlSociety, 2006. 545-549.
[ 3] 马少玲, 陆兆文, 吴有庭, 等. 石英晶体微天平 (QCM)在超临界CO 2 过程中的应用[ J]. 化工进展, 2007, 26( 8): 1080- 1087.
[ 4] BottomVE. Introduction to quartz crystal unit design [M]. NewYork, USA: VanNostrandReinholdCom-pany, 1982. 78- 89.
[ 5] Kurosawa C, Kurosawa S, AizawaH. Computational simulation of vibration displacement on piezoelectric quartz crystal using finite elementmethod[ A]. Pro-ceedings of the 2004 IEEE International Frequency Control Symposium and Exposition[ C]. Montrea,l Canada: IEEE Ultrasonics, Ferroelectrics and Fre-quencyControlSociety, 2004. 554-557.
[ 6] Akio I. GroovedAT-CUT quartzplate[ A]. Proceed-ings of the 2000IEEE/EIA International[ C]. Kansas City, MO, USA: IEEEUltrasonics, Ferroelectricsand FrequencyControlSociety, 2000. 416- 419.
[ 7] 张庆, 王华坤,张世琪. 预压叠层柔性机械臂弯曲试验及有限元数值仿真[ J]. 南京理工大学学报 (自然科学版), 2006, 30( 1): 8- 11.
[ 8] TierstenHF. Linear piezoelectric plate vibrations [M]. NewYork, USA: PlenumPress, 1969.
[ 9] MindlinRD, Lee PCY. Thickeness-shear and flex-ural vibrationsof partiallyplatedcrystalplates[ J]. Int JSolidsStrutures, 1966, 2( 1): 125-139.
[ 10] 秦自楷. 压电石英晶体[M]. 北京: 国防工业出版社, 1980.
[ 11] JanshoffA, GallaHJ, SteinemC. The quartz-crystal microbalance in life science[ J]. AngewChemIntEd, 2000, 39( 2): 4004- 4032.
[ 12] JosseF, LeeY, et a.l Analysisof the radial depend-ence ofmass sensitivity for modified electrode quartz crystal resonators[ J]. Anal Chem, 1998, 70( 2): 237-247.


Last Update: 2012-11-19