|Table of Contents|

Components,Structure and Antimicrobial Activity of Metabolite of Pseudonomas sp. BS-03

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2009年06期
Page:
814-819
Research Field:
Publishing date:

Info

Title:
Components,Structure and Antimicrobial Activity of Metabolite of Pseudonomas sp. BS-03
Author(s):
SHEN Wei12ZHAO Jian-feng1AI Feng-xiang1Silayili Tuoheti1YANG Shu-lin1
1.Biotechnology Institute,NUST,Nanjing 210094,China;2.College of Science,Nanjing Agricultural University,Nanjing 210014,China
Keywords:
Pseudomonas sp. ferment liquor rhamnolipid Fourier transform infrared spectroscopy electrospray ionization mass spectrometry nuclear magnetic resonance components chemical structure antimicrobial activity
PACS:
Q93
DOI:
-
Abstract:
The purpose is to expand the application of glycolipid compounds prepared by fermentation in the fields of biological medicine.Components in ferment liquor produced by compound mutation Pseudonomas sp.BS-03 with glycol as carbon source are identified with thin layer chromatography(TLC),in which the components of the extract of the ferment liquor are analyzed with Fourier transform infrared spectroscopy(FTIR),electrospray ionization mass spectrometry(ESI-MS) and nuclear magnetic resonance(NMR),and the chemical structures of the ferment liquor are conjectured.The result shows that components in ferment liquor are mainly natural lipid,glycolipid and lipopeptide.There are four main rhamnolipids,namely RhC10,RhC10C10,Rh2C10 and Rh2C10C10,in glycolipid extract,which contain both several kinds of acid precursors and dehydrating acid precursors.The testing result of antimicrobial activity of rhamnolipid shows that the diameter of inhibitory zone is wider and the impact on different phases of microbe is different.The mucedine has the strongest inhibitory effect,followed by the yeast,and the worst is the bacteria.

References:

[ 1] BenincasaM, AbalosA, Oliveira I, et a.l Chemical structure, surfaceproperties andbiologicalactivitiesof the biosurfactant producedbyPseudomonas aeruginosa LBI fromsoapstock[ J]. Antonie vanLeeuwenhoek, 2004, 85( 1): 1-8.
[ 2] HabaE, PinazoA, JaureguiO, et a.l Physicochem-i cal characterizationandantimicrobial properties of rh-amnolipidsproducedbyPseudomonas aeruginosa47T2 NCBIM40044[ J]. Biotechnology andBioengineering, 2003, 81( 3): 316-322.
[ 3] AbalosA, Pinazo A, InfanteMR, et a.l Physico-chemicalandantimicrobial propertiesof newrhamno-l ipidsproducedbyPseudomonas aeruginosaAT10from SoybeanOilRefineryWastes[ J]. Langmuir, 2001, 17( 5): 1367-1371.
[ 4] Banat I M, Makkar R S, Cameotra S S. Potential commercial applications ofmicrobial surfactants[ J]. AppliedMicrobiology and Biotechnology, 2000, 53 ( 5): 495-508.
[ 5] Mata-Sandoval J C, Karns J, TorrentsA. High-per-formance liquidchromatographymethodfor the charac-terizationof rhamnolipidmixturesproducedbyPseudo-monas aeruginosaUG2oncornoil[ J]. JChromatogr A, 1999, 864( 2): 211-220.
[ 6] D?zielE, L?pineF, DennieD, et a.l Liquidchroma-tography/mass spectrometry analysisofmixturesof rh-amnolipidsproducedbyPseudomonas aeruginosastrain 57RP grownonmannitolor naphthalene[ J]. Biochim BiophysActa, 1999, 1440( 2): 244- 252.
[ 7] Mata-Sandoval J C, Karns J, TorrentsA. High-per-formance liquidchromatographymethodfor the charac-terizationof rhamnolipidmixturesproducedbyPseudo-monas aeruginosaUG2 on corn oil[ J]. Journal of ChromatographyA, 1999, 864( 2): 211- 220.
[ 8] BenincasaM, Contiero J, ManresaMA, et a.l Rh-amnolipidproduction byPseudomonas aeruginosaLBIgrowing onsoapstockas the sole carbonsource[ J]. J FoodEng,i 2002, 54( 4): 283-288.
[ 9] L?pine F, D?zielE, Milot S, et a.l Liquidchromato-graphic/mass spectrometric detection of the 3-( 3-hydroxyalkanoyloxy) alkanoic acidprecursorsof rham-nolipids inPseudomonas aeruginosa cultures[ J]. J MassSpectrom, 2002, 37( 1): 41-46.
[ 10] Benjamas T, Wanna P, Anirut L, et a.l Chemical structuresandbiologicalactivitiesof rhamnolipidspro-ducedbyPseudomonas aeruginosaB189 isolatedfrom milk factory waste [ J]. Bioresource Technology, 2007, 98(5): 1149-1153.
[ 11] Stipcevic T, PiljacT, Isseroff R R. D-i rhamnolipid from Pseudomonas aeruginosa displays differential effects onhuman keratinocyte and fibroblast cultures [ J]. Journal of Dermatological Science, 2005, 40 ( 2): 141-143.
[ 12] StipcevicT, PiljacA, PiljacG. Enhancedhealing of ful-l thickness burnwoundsusing d-i rhamnolipid[ J]. Burns, 2006, 32( 1): 24- 34.
[ 13] GoranP, VisnjaP. Immunological activity of rhamnolip-id[P]. UnitedStates: US5514661, 1996-05-07.
[ 14] WangXiulin, GongLiangyu, LiangShengkang, et a.l Algicidal activity of rhamnolipid biosurfactants pro-ducedbyPseudomonas aeruginosa[ J]. Harmful A-l gae, 2005, 4( 2): 433-443.
[ 15] AsclY, NurbasM, AcikelbYS. A comparative study for the sorptionofCd( II) byK-feldspar andsepiolite as soil components, andthe recovery of Cd( II) using rhamnolipidbiosurfactant[ J]. Journal of Environmen-talManagement, 2008, 88( 3): 383-392.
[ 16] Whang L, LiuPG, Ma C, et a.l Application of rh-amnolipidand surfactin for enhanceddiesel biodegra-dation) Effects of pH and ammonium addition[ J]. Journal of HazardousMaterials, 2009, 164( 2/3): 1045-1050.
[ 17] GuoY, HuY, GuRR, et a.l Characterization and micellizationof rhamnolipidic fractions and crude ex-tracts produced by Pseudomonas aeruginosa mutant MIG-N146[ J]. Journal of Colloid and Interface Sc-i ence, 2009, 331( 2): 356-363.
[ 18] FuH, ZengG, ZhongH, et a.l Effectsof rhamnolip-idon degradation of granular organic substrate from kitchenwasteby aPseudomonas aeruginosastrain[ J]. Colloids and Surfaces B: Biointerfaces, 2007, 58 ( 2): 91-97.
[ 19] CatherineNM. Environmental applications for biosur-factants[ J]. Environmental Pollution, 2005, 133 ( 2): 183-198.
[ 20] Maria B, Fabio RA. Pseudomonas aeruginosa LBI production as an integratedprocess using the wastes fromsunflower-oil refining as a substrate[ J]. Biore-sourceTechnology, 2008, 99( 9): 3843- 3849.
[ 21] BenincasaM, Contiero J, ManresaMA, et a.l Rh-amnolipidproduction byPseudomonas aeruginosaLBI growing onsoapstockas the sole carbonsource[ J]. J FoodEng,i 2002, 54( 4): 283-288.
[ 22] 项海,王纬,章宏梓, 等. 鼠李糖脂促进含油餐饮废水的生物降解[ J]. 水处理技术, 2008, 34(9): 65-74.
[ 23] 李春梅, 梁生康,王修林, 等. 鼠李糖脂对东海典型甲藻赤潮生物生长抑制作用的影响[ J]. 应用与环境生物学报, 2007, 13(5): 657- 661.
[ 24] 周清,杨乐巍,黄国强,等.鼠李糖脂对土壤中原油降解的促进[ J]. 环境化学, 2009, 28( 2): 181-184.
[ 25] KishoreD, AshisKM. Crude petroleum-oilbiodegra-dation efficiency of Bacillus subtilis andPseudomonas aeruginosa strains isolated from a petroleum-oil con-taminatedsoil fromNorth-East India[ J]. Bioresource Technology, 2007, 98( 7): 1339-1345.
[ 26] 沈薇, 杨树林,宁长发, 等. 蓝色凝胶平板法筛选生物表面活性剂产生菌[ J]. 南京理工大学学报(自然科学版), 2005, 29( 4): 486-490.
[ 27] 宁长发, 杨树林, 沈薇. 流动注射在线检测微生物代谢产物中糖脂类生物表面活性剂[ J]. 分析化学, 2004, 32( 7): 979.
[ 28] 沈薇, 杨树林,宁长发. 铜绿假单胞菌(Pseudomonas aeruginosa)BS-03的诱变育种及产鼠李糖脂类生物表面活性剂的摇瓶工艺初探[ J]. 食品与发酵工业, 2004, 30( 12): 26- 30.
[ 29] 宁长发, 沈薇,孟广荣, 等. 产生物表面活性剂菌种的一种快速筛选模型[ J]. 微生物学通报, 2004, 31 ( 3): 55-58.
[ 30] 杨树林,宁长发,沈薇, 等. 一种鼠李糖脂的制备方法 [ P]. 中国: CN189131, 2007-01-10.
[ 31] SimL, WardOP, LiZY. Productionandcharacter-i sation of a biosurfactant isolated fromPseudomonas aeruginosaUW-1[ J]. Journal of IndustrialMicrobio-l ogy andBiotechnology, 1997(19): 232-238.
[ 32] 沈薇, 李校堃,杨树林, 等. 电喷雾质谱法分析假单胞菌的代谢产物鼠李糖脂[ J]. 分析化学, 2006, 33 ( 1): 69-72.
[ 33] ShenWe,i Yang Shulin, Li Xiaokun. Electrospray -i onizationmass spectrometric detectionof rhamnolipids and their acidprecursors inPseudomonas sp. BS-03 cultures[ J]. Chinese Journal ofBiotechnology, 2005, 25( 10): 83-87.

Memo

Memo:
-
Last Update: 2012-11-19