|Table of Contents|

Self-organization Evolution Model of Supply Chain Resources Synergy

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2010年01期
Page:
35-39
Research Field:
Publishing date:

Info

Title:
Self-organization Evolution Model of Supply Chain Resources Synergy
Author(s):
HUANG Xiao-wei1HE Ming-sheng12
1.School of Management,Harbin Institute of Technology,Harbin 150001,China;2.School ofSocial Development,East China University of Political Science and Law,Shanghai 201620,China
Keywords:
supply chain resources synergy order parameters self-organization
PACS:
F274
DOI:
-
Abstract:
For the self-organization evolution issues of the supply chain,a self-organization evolution model is established by using collaborative theory and system dynamics approach.With the analysis of the model,this paper concludes that the collaborative ability and the profit ability determine the evolution of self-organization.When the system parameters meet the non-stable conditions,random fluctuations cause the system ordered structure to change.This model reveals the evolution process and the nature of supply chain resources synergy,which provides a theoretical guide for the supply chain enterprises.

References:

[ 1] ?H ironao K. Introduc tion: Inte lligent transport system sand image inform ation [ J] . Journal of the Institute o fIm age Inform a tion and Te lev ision Eng ineers, 2005,59( 6): 812- 817.
[ 2] Pang C C C, Lam W W L, Yung N H C. A m ethodfor veh ic le count in the presence of m ultiple- veh ic leocclusions in traffic im ages[ J]. IEEE Transactions onInte lligent Transpo rtation System s, 2007, 8 ( 3): 441- 459.
[ 3] 王国良. 图像处理技术在智能交通系统中应用的研究[ D ] . 大连: 大连海事大学信息工程学院, 2008.
[ 4] 丁海玲, 黎明, 林宝军. 基于JPEG2000的交通监控图像高速实时压缩应用仿真研究[ J]. 计算机应用与软件, 2007, 24( 9): 113- 116.
[ 5] Lam W W L, Pang C C C, Yung N H C. V eh ic lecomponent identification based on mu ltisca le tex tu ra lcour iers[ J]. IEEE T ransactions on Inte lligent TransportationSystem s, 2007, 8( 4): 681- 694.
[ 6] 王建英, 尹忠科, 张春梅. 信号与图像的稀疏分解及初步应用[M ]. 成都: 西南交通大学出版社, 2006.
[ 7] M alla t S G, Zhang Z F. M a tch ing pursuits w ith tim e-frequency dictionaries[ J]. IEEE Transactions on S ignal Process ing, 1993, 41( 12): 3397- 3415.
[ 8] 张跃飞, 姜玉亭, 王建英, 等. 基于稀疏分解的图像压缩[ J] . 系统工程与电子技术, 2006, 28 ( 4): 513- 515.
[ 9] Dav is G, M a llat S, Ave llaneda M. Adaptive g reedyapprox im ation[ J]. Journa l o f ConstructiveApprox im ation,1997, 13( 1): 57- 98.
[ 10] H an K H, K im J H. Quantum- inspired evo lutionaryalgor ithm for a c lass o f comb inator ia l optim ization[ J].IEEE Transactions on Evo lutiona ry Com putation,2002, 6( 6): 580- 593.
[ 11] Zhang G X, Rong H N. Rea-l obse rvation quan tum- inspiredevo lutionary algor ithm for a c lass o f num er ica loptim ization problem s[ A] . Proceedings of the 7 th international Conference on Com putationa l Sc ience[ C ].H e idelbe rg, Germ any: Spr inger-Ve rlag, 2007: 989- 996.
[ 12] N arayanan A, M ooreM. Quantum- inspired genetic a-lgo rithm [ A ]. Proceedings o f IEEE Interna tiona l Conferenceon Evolutionary Com puta tion[ C ]. New York,USA: IEEE Press, 1996: 61- 66.
[ 13] Babu G S S, Das D B, Patvardhan C. Rea-l pa ram e terquantum evo lutionary algor ithm for econom ic load dispatch[J]. IET Generation, T ransm ission & D istr ibution,2008, 2( 1) : 22- 31.
[ 14] Luo Z Y, W ang P, L i Y G, e t a.l Quantum- insp iredevo lu tionary tun ing o f SVM param eters[ J] . Progressin N atu ra l Sc ience, 2008, 18( 4): 475- 480.
[ 15] Vandergheynst P, Frossard P. E ffic ient im age representation by an isotropic refinem en t in m atching pursuit[ A ] . Pro ceedings o f IEEE Inte rnational Con ferenceon Acoustics, Speech, and S ignal Processing [ C ].New Yo rk, USA: IEEE Press, 2001: 1757- 1760.

Memo

Memo:
-
Last Update: 2012-11-02