|Table of Contents|

Flow Design and Device Development of Supercritical Fluid Anti-solvent Crystallization

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2010年01期
Page:
146-150
Research Field:
Publishing date:

Info

Title:
Flow Design and Device Development of Supercritical Fluid Anti-solvent Crystallization
Author(s):
HUANG De-chun1LIU Wei2YUE Long1SHI Yi-qiang1WANG Zhi-xiang1
1.School of Pharmacy,China Pharmaceutical University,Nanjing 210009,China;2.Department of Mechanical Electronics Engineering,Nanjing Normal University,Nanjing 210042,China
Keywords:
supercritical fluid anti-solvent crystallization flow designs device development
PACS:
TQ026.5
DOI:
-
Abstract:
To simplify the operation flow and drop the device building cost of supercritical fluid anti-solvent(SAS) crystallization,one of the newly emerging separation technologies in recent years,based on the investigation of supercritical extraction device development,a batch flow employing the supercritical CO2 as an anti-solvent is designed for the biochemical and antibiotic material treatments.A set of small scale device is built by combining with the reconstruction of pressure pump and the rational collocation of flow subsystems such as filter,pipeline and condensation.The building cost of the newly developed device is far lower than the international market quotation of similar apparatus.The experimental results of water pressure and SAS granulation of citric acid-acetone solution show that,the newly developed device has the characteristics of stable and rapid pressurization and reliable tightness,and its operating and controlling performance is also perfect.The change tendencies of the determined curves of production rate versus pressure and production rate versus temperature are found to be in good agreement with those reported in literature,namely that the production rate increases with the increase of pressure,and increases firstly and decreases later with the increase of temperature.

References:

[ 1] ?贺文智, 姜兆华, 索全伶. 超临界流体技术在制备药物输送系统中的应用[ J]. 化学通报, 2003,66( 1): 27- 31.
[ 2] M igue l F, M artin A, M attea F. Precip itation of lute inand co-precip ita tion of lute in and poly- lactic acid w iththe supercritical ant-i so lvent process[ J]. Chem ica lEng-ineer ing and Processing, 2008, 47( 9 /10): 1594- 1602.
[ 3] 黄德春, 刘巍, 王志祥, 等. 基于光测法的晶种量对结晶动力学影响研究[ J]. 南京理工大学学报(自然科学版), 2009, 33( 3): 393- 398.
[ 4] 彭琦, 许群, 李宏平, 等. 超临界流体沉积技术在材料颗粒制备中的应用[ J]. 世界科技研究与发展,2007, 29( 4): 9- 15.
[ 5] 许群, 倪伟. 超临界流体技术制备纳米材料的研究与展望[ J]. 化学进展, 2007, 19( 9): 1419- 1427.
[ 6] 王建鸣. 超临界萃取技术的新进展[ J]. 高等函授学报, 2006, 20( 1): 56- 58.
[ 7] 王巨成, 李国亮, 卫彩霞. 超临界CO2 萃取小试设备工艺设计与设备选型[ J]. 山西林业科技, 2002,6( 2): 10- 12.
[ 8] 廖传华, 王栋, 顾海明, 等. 超临界CO2 萃取技术及成套装备[ J] . 石油化工设备, 2002, 31( 5): 32- 34.
[ 9] M igue l F, M artin A, Gam se T, e t a.l Supe rcr itica lanti so lvent prec ip itation of lycopene: E ffect o f the operating param eters [ J]. The Journa l o f Supe rcr itica lFluids, 2006, 36( 3) : 225- 235.
[ 10] Kang Y Q, Y in G F, Ouyang P, et a.l Preparation o fPLLA /PLGA m icroparticles using so lution enhanced d ispersionby supercr itica l fluids ( SEDS) [ J]. Journa l o fCo llo id and Interface Sc ience, 2008, 322( 1): 87- 94.
[ 11] JeongH H, Yoo K P, L im J S. Preparation of po ly styrenesubm icron partic les us ing ASES process in supe rcriticalca rbon diox ide [ J]. Journa l o f Industr ia l andEng ineer ing Chem istry, 2008, 14( 1): 77- 83.
[ 12] 朱恩俊, 陈钧, 吴守一, 等. 国产化超临界CO2 萃取试验装备的研制[ J]. 江苏理工大学学报, 1997,18( 3): 1- 5.
[ 13] 时钧, 汪家鼎, 余国琮, 等. 化学工程手册[M ]. 第2版. 北京: 化学工业出版社, 1996.
[ 14] 伊赫桑?? 巴伦. 纯物质热化学数据手册?? 上卷[M ] . 北京: 科学出版社, 2003.
[ 15] 杨桢, 郑奋勇, 李琳. 超临界CO2 萃取设计方法探讨[ J] . 食品与机械, 1997, 13( 5): 27- 28.
[ 16] 陈龙淼, 钱林方. 基于热效应的复合材料身管强度分析[ J] . 南京理工大学学报(自然科学版), 2008,32( 6): 710- 714.
[ 17] 蒋伟华. 基于O 形橡胶圈密封的高压容器设计和研究[ D]. 杭州: 浙江大学化学工程与生物工程学系, 2006.
[ 18] 国家质量技术监督检验检疫总局. 压力容器安全技术监察规程[M ] . 北京: 中国劳动社会保障出版社, 1999.

Memo

Memo:
-
Last Update: 2012-11-02