|Table of Contents|

Dynamic Compensation Secure Steganographic Algorithm in Prediction-error Domain

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2010年02期
Page:
187-192
Research Field:
Publishing date:

Info

Title:
Dynamic Compensation Secure Steganographic Algorithm in Prediction-error Domain
Author(s):
ZHANG ZhanLIU Guang-jieWANG Jun-wenDAI Yue-weiWANG Zhi-quan
School of Automation,NUST,Nanjing 210094,China
Keywords:
information hiding steganography dynamic compensation Markov chain second-order distribution maintain prediction-error domain
PACS:
TP309.7
DOI:
-
Abstract:
In order to ensure the high-order statistical security of stego-images into which large amount of information is embedded,the image Markov chain model is extended to the prediction-error domain of image.Based on the dynamic compensation theory,a novel steganographic algorithm preserving second-order statistical properties in prediction-error domain is proposed.According to the changes of cover-image prediction-error Markov chain statistical distribution,the algorithm guides embedded functions to make use of post-embedding secret information to compensate dynamically the second-order statistical changes of cover-image caused by pre-embedding.The statistical security of stego-image is improved without loss of the steganographic capacity.The experimental results show: when large-capacity information is embedded,the proposed algorithm has high ability to preserve the second-order statistical properties in prediction-error domains of cover images and to improve the steganographic security.

References:

[1]Luo X Y, W ang D S, W ang P, e t a.l A rev iew on b lind detec tion fo r im ag e steganography [ J]. S ignal Processing, 2008, 88( 9) : 2138- 2157.
[2] Zhang X P, W ang S Z, Zhang K W. S teganog raphy w ith least h istog ram abnorm a lity [ A ]. Lecture No tes in Compu ter Sc ience: Interna tiona l W o rkshop on M athem aticalM ethods, M ode ls, and Arch itectures for Computer Netwo rk Security [ C ]. Pete rsburg: Spr inger, 2003: 395- 406.
[3] Provos N. OutGuess[ EB /OL] . www. outguess. org, 2004 /2008.
[4] Eggers J, Joachmi J, Baum lR, et a.l A communications approach to mi age steganog raphy [ A ]. Proceed ings of SPIE-The International Soc iety for Optica l Eng ineer ing [ C]. San Jose: SPIE, 2002. V( 4675): 26- 37.
[5] Liu G J, L ian S G, Ren Z, et a.l Im age steganography based on quantization-embedders com bination [ A ]. Proceed ing s of the 2007 IEEE Interna tiona l Conference onMu ltimedia and Expo, ICME 2007 [ C]. Beijing: IEEE, 2007: 1115- 1118.
[6] Su llivan K, So lanki K, Manjunath B S, e t a.l Determ-i n ing achievable rates fo r secure, zero divergence, steganography[ A ]. 2006 Internationa l Conference on Im age Processing[ C]. A tlanta: IEEE, 2006: 121- 124.
[7] Sarkar A, So lank iK, M adhow U, et a .l Secure steganog raphy: statistica l restoration o f the second order dependenc ies fo r im proved secur ity [ A ]. 2007 IEEE Interna tiona l Conference on Acoustics, Speech, and S ignal Processing [ C ]. Piscataw ay: IEEE, 2007. 2( II): 277- 280. [ 8 ] C ach in C. An inform ation-theo re tic m ode l fo r steganography[ J]. Inform ation and Com putation, 2004, 192( 1): 41- 56.
[9] Amba lavanan A, Chandram ou li R. A Bayesian im age stegana lysis appro ach to estim ate the embedded secret m essage leng th[ A] . Proceed ing s of the 7 thW orkshop onM ultim edia and Secur ity [ C ]. New Yo rk: ACM, 2005: 33- 38. [ 10 ] Su llivan K, M adhow U, Chandrasekaran S, et a.l Steg ana lysis fo rM arkov cover data w ith app lications to im ag es[ J]. IEEE Transactions on In fo rm ation Fo rensics and Security, 2006, 1( 2): 275- 287.
[11] Schae fe rG, StichM. UC ID?? An Uncompressed Co-l our Im age Database [ EB /OL ]. http: / / vision. cs. aston. ac. uk /datasets /UC ID /uc id. htm ,l 2004 /2008.

Memo

Memo:
-
Last Update: 2010-04-30