|Table of Contents|

Instantaneous Availability Model of Repairable Systems with Repair Time Omission


Research Field:
Publishing date:


Instantaneous Availability Model of Repairable Systems with Repair Time Omission
YANG Yi12WANG Li-chao2ZOU Yun1KANG Rui2
1.School of Automation,NUST,Nanjing 210094,China;2.Department of Project Systems,Beihang University,Beijing 100191,China
instantaneous availability non-Markov repairable system single-unit repair time reliability
In view of the shortage of a single-unit Markov repairable system,assuming the lifetime and repair time are random variables with general distributions,this paper defines the available state of the single-unit non-Markov repairable system.The critical repair time is considered into two classes.One is a constant and the other is a non-negative random variable.An instantaneous availability model of the new system is built,which can describe the system performance more accurately.Some numerical examples are given to compare the instantaneous availability of the former and the later model,concluding that the later is better than the former in instantaneous availability.


[1]Ba ll F B, Sansom M S. S ing le-channe l auto-correlation functions the e ffects o f tim e interval om ission[ J]. B iophysica l Journa ,l 1988, 53( 5): 819- 832.
[2] H awkes A G, Ja la liA, Colquhoun D. The d istr ibutions of the apparent open times and shut tim es in a single channel reco rd w hen br ief events can no t be detected [ J]. Philosophical Transactions of the Roya l Soc iety London, 1990, A 322: 511- 538.
[3] H awkes A G, Jala liA, Co lquhoun D. Asym ptotic d istributions o f apparent open tim es and shut tim es in a sing le channel record a llow ing for the om ission o f brief even ts[ J]. Phil T rans R Soc London, 1992, B 337: 383- 404.
[4] Bar low R E, Proschan F. M athem atical theory o f re l-i ab ility[M ]. New York: W iley, 1965. 213- 235.
[5] Cu i L R, X ie M. Availability ana lys is o f period ica lly inspected sy stem s w ith random wa lk m ode l[ J]. Journa l of App lied Probability, 2001, 38: 860- 871.
[6] Cu i L R, L i J L. Ava ilability for a repa irable system w ith fin ite repa irs[ A]. Proceed ings of the 2004 Asian InternationalW orkshop Advanced Re liab ility M ode ling ( A IWARM 2004 ) [ C ]. H irosh im a, Japan: W o rld Sc ientific, 2004: 97- 100.
[7] Zheng Z H, Cu i L R, H awkes A G. A study on a sing le-unitM arkov repa irable system w ith repair tim e om iss ion[ J] . IEEE T ransactions on Reliab ility, 2006, 55: 182- 188.
[8] H assett T F, D ie trich D L, Szidarovszky F. T im e-vary ing fa ilure rates in the ava ilab ility& reliab ility analysis of repa irable system s [ J]. IEEE T ransactions on Re liab ility, 1995, 44: 155- 160.
[9] Sun H, H an J J. Instantaneous availability and interval availability for system s w ith tim e-vary ing failure rate: stair-step approx ima tion [ A ]. 2001 Pac ific R im International Symposium on Dependab le Com puting ( PRDC 2001) [ C]. Seou,l Ko rea: [ s. n. ], 2001: 371- 375.
[10] Zhang T, H o rigom eM. Ava ilability and re liab ility o f system w ith dependent com ponents and tim e- vary ing fa ilure and repa ir rates[ J]. IEEE Transac tions on reliab ility, 2001, 50: 151- 158.
[11] Sa rkar J, Chandhuri G. Ava ilab ility o f a system w ith gamma life and exponential repa ir time unde r a perfect repa ir po licy [ J]. Statistics and Probability Letters, 1999, 43: 189- 196.
[12] Dagpunar J S. Renewa-l type equa tions fo r a g eneral repa ir process [ J]. Qua lity and Re liab ility Eng ineering Inte rnationa,l 1997, 13: 235- 245.


Last Update: 2010-04-30