|Table of Contents|

Properties and Application of Polyacrylonitrile-based Low-temperature Carbonization Fibers


Research Field:
Publishing date:


Properties and Application of Polyacrylonitrile-based Low-temperature Carbonization Fibers
MA Jie12WANG Cheng-guo12YU Mei-jie12ZHANG Min12WANG Qi-fen12
1.Key Laboratory for Liquid-solid Structural Evolution and Processing of Materials(Ministry of Education);2.Carbon Fiber Engineering Research Center,Shandong University,Jinan 250061,China
carbonization fibers carbonization temperature chemical composition microstructures mechanical property electrical property
The polyacrylonitrile(PAN)-based fibers are carbonized at temperature of 600~900℃.Chemical composition and microstructure of the fibers are characterized using elemental analyzer,wide-angle X-ray diffractometer and laser Raman spectrometer.Mechanical and electrical properties of the fibers are examined.The results indicate that with the increase of the carbonization temperature,the mass fraction of carbon increases;nitrogen,hydrogen and oxygen are partially removed from the fibers;linear density and elongation at break of the fibers decrease,volume density and tensile strength of the fibers increase;electrical resistivity of the fibers decreases drastically due to the increasing volume fraction of turbostratic graphite structure formed in carbonization process;low-temperature carbonization fiber/resin composite coatings with admirable antistatic property can be prepared.


[1] 王晓丽, 杜仕国, 施冬梅. 防静电涂料研究进展[ J]. 化工新型材料, 2000, 28( 10): 17- 20.
[2] Nark isM, Lidor G, Vaxm an A, et a.l New injection mo ldable e lectrosta tic diss ipa tive ( ESD ) com po sites based on very low carbon b lack lo ad ing s[ J]. Journal of E lec trostatics, 1999, 47( 4): 201- 214.
[3] Azim S S, Sa theesh A, Ram u K K, et a.l S tudies on graphite based conductive pa in t coatings[ J]. Prog ress in Organ ic Coatings, 2006, 55( 1): 1- 4.
[4] Drubetsk iM, Siegm ann A, N ark isM. E lectr ica l properties o f hybr id ca rbon b lack /carbon fiber polypropy-l ene com po sites [ J ]. Journa l of M ater ia ls Sc ience, 2007, 42( 1) : 1- 8.
[5] A -l Sa leh M H, Sundara ra j U. N anostructured carbon b lack filled po lypropylene / po ly styrene blends conta-i n ing styrene-butad iene- styrene copo lym er: Influence o f m orpho logy on electrical resistiv ity [ J]. European Po-l yme r Journa ,l 2008, 44( 7): 1931- 1939.
[6] Bueche F. E lec trical res istiv ity o f conducting partic les in an insu la ting ma trix [ J]. Jou rnal o f Applied Physics, 1972, 43( 11): 4837- 4838.
[7] Lux F. Mode ls proposed to exp la in the electrica l conductiv ity ofm ix turesmade of conductive and insu lating mater ia ls[ J]. Journal o fMater ia ls Science, 1993, 28 ( 2): 285- 301.
[8] 贺福. 碳纤维及其应用技术[M ]. 北京: 化学工业 出版社, 2004.
[9] QJ 3074- 98, 碳纤维及其复合材料电阻率测试方法[ S].
[10] QJ 2306- 92, 空间环境条件下材料表面电阻率测试 方法[ S].
[11] InagakiM, Fe iyu K. Ca rbon M a terials Science and Eng inee ring[M ]. Be ijing: TsinghuaUn iversity Press, 2006: 69.
[12] Pesin L A. Rev iew structure and properties o f g lasslike ca rbon[ J]. Journa l o fM ater ia ls Science, 2002, 37( 1): 1- 28.
[13] 李东风, 王浩静, 贺福, 等. T300和T700碳纤维的结 构和性能[ J]. 新型碳材料, 2007, 22( 1): 59- 64. 278


Last Update: 2010-04-30