|Table of Contents|

Preparation and Structure Characterization of Eu2Sn2O7 Nanocrystals by Salt-assistant Glycine Combustion Method


Research Field:
Publishing date:


Preparation and Structure Characterization of Eu2Sn2O7 Nanocrystals by Salt-assistant Glycine Combustion Method
TONG Yu-ping1LU Lu-de2WANG Xin2XUE Pan-pan2
1.School of Civil Engineering and Communication,North China University of Water Conservancyand Electric Power,Zhengzhou 450011,China;2.Key Laboratory for Soft Chemistryand Functional Materials,Ministry of Education,NUST,Nanjing 210094,China
Eu2Sn2O7 nanocrystals salt-assistant glycine combustion method synthesis structure characterization
To obtain highly dispersed Eu2Sn2O7 nanocrystals with uniform size distribution,a salt-assistant glycine combustion method is used at relatively low temperature.The Eu2Sn2O7 nanocrystals are characterized by X-ray diffraction(XRD),infrared spectrum(IR),Raman spectrum and transmission electron microscopy(TEM).The results show that the ultrafine square-shaped Eu2Sn2O7 nanocrystals can be obtained at 700℃ by this method.The distribution of particle sizes is uniform and the average size is 25 nm.The regular lattices of Eu2Sn2O7 nanocrystals in the high resolution transmission electron microscopy(HRTEM) image show the Eu2Sn2O7 nanocrystals have good crystalline.The interplanar distance of 0.298 nm matches with that of(222) crystallographic plane of the cubic Eu2Sn2O7 structure.The fluorescent property result of Eu2Sn2O7 nanocrystals at room temperature shows the characteristic diffraction peaks appeare at the range of 578~650 nm,which is attributed to the f-f eletron transition of Eu3+.


[1] Lian J, W ang LM, W ang S X, e t a.l Nanosca le man ipu la tion of pyroch lo re: New nanocomposite ion ic conduc tors [ J ]. Phys Rev Lett, 2001, 87 ( 14 ): 145901- 145903.
[2] Xu Q, PanW, W ang J D, e t a .l Preparation and the rm ophysica l prope rties o f Dy2 Zr2O7 ceram ic fo r therm a l barr ie r coatings [ J ]. M a ter Lett, 2005, 59 ( 22 ): 2804- 2807.
[3] Zhao JH, Kunke lH P, Zhou X Z, et a .l C ritical behav ior of the m agneto resistive pyroch lo re T l2Mn2O7 [ J] . Phys Rev Lett, 1999, 83( 1): 219- 222.
[4] Lutique S, Kon ings R J M, Rondine lla V V, e t a.l The therm al conductiv ity o f Nd2 Zr2O7 py rochlore and the therm al behav ior o f py rochlore-based inert m atrix fue l[ J]. J A lloy s Compd, 2003, 352( 1 /2): 1- 5.
[5] Takah isa O, Kazushi O, Sh in ich iT, et a.l W ater and hydrogen evo lution properties and pro ton ic conducting behav io rs o f Ca2+-doped La2 Zr2O7 w ith a py rochlore structure[ J]. So lid State Ion ics, 1997, 104 ( 3 /4 ): 249- 258.
[6] Nag Chattopadhyay A, Dasgupta P, Jana Y M, et a.l A study on crystal field e ffect and sing le ion an isotropy in py rochlore europium titanate ( Eu2T i2O7 ) [ J] . J A-l loys Compd, 2004, 384( 1 /2): 6- 11.
[7] Sohn JM, K im M R, Ih lW oo S. The cata lytic activ ity and surface character ization o f Ln2 B2O7 ( Ln = Sm, Eu, Gd and Tb; B= T i or Zr) w ith py rochlore structure as nove l CH4 combustion cata lyst[ J]. Cata l Today, 2003, 83 ( 1 /4) : 289- 297. [ 8 ] Takam ura H, Tulle R H L. Ionic conductiv ity of Gd2GaSbO7-Gd2 Zr2O7 so lid solutionsw ith structural d isorder [ J]. So lid State Ionics 2000, 134 ( 1/2): 67 - 73.
[9] A liN, H ill P, Zhang X, et a.l M agnetization and therm oremanent magnetization of Tb2M o2O7 and Y2M o2O7 spin g lasses[ J]. J A lloys Compd, 1992, 181( 1 /2): 281- 285.
[10] G rey C P, Debson CM, Cheethan A K, e t a.l Stud ies o f rare- ea rth stannates by tr in-119MAS NMR. The use o f pa ramagnetic sh ift probes in the so lid state [ J]. J Am Chem Soc, 1989, 111( 2) : 505- 511.
[11] Yu T H, Tu llerH L. Ion ic conduction and d iso rder in the Gd2 Sn2O7 py rochlore system [ J]. Solid State Ionics, 1996, 86 /88( 1) : 177- 182.
[12] Li K W, W ang H, Yan H. H ydro therm a l prepara tion and pho tocata ly tic properties of Y2 Sn2O7 nanocrystals [ J] . JM o l Ca tal A: Chem, 2006, 249 ( 1/2 ): 65 - 70.
[13] S ickafus K E, M inervini L, Grim es R W, et a.l Rad-i ation to lerance o f com plex ox ides[ J]. Sc ience, 2000, 289( 5487): 748- 751.
[14] Tezuka K, H inasu Y J. E lec tron param agne tic resonance spectra of Pr4+ ions doped in py rochlore-type compounds La2 Sn2O7 and La2 Zr2O7 [ J]. So lid Sta te Chem, 1999, 143( 1): 140- 143.
[15] Sr ivastava A M. On the lum inescence o f B i3+ in the pyroch lore Y2 Sn2O7 [ J]. M ater Res Bul,l 2001, 37 ( 4): 745- 751.
[16] Zhu H L, Jin D L, Zhu L M, e t a.l A genera l hydrotherm a l route to synthes is o f nancrystalline lanthan ide stannates: Ln2 Sn2O7 ( Ln= Y, La- Yb) [ J]. J A lloy Com pd, 2008, 464( 1 /2): 508- 513.
[17] Lu Z G, W ang JW, Tang Y G, et a.l Synthesis and pho to lum inescence o f Eu3+ -doped Y2 Sn2O7 nanocrysta ls[ J]. J So lid Sta te Chem, 2004, 177 ( 9) : 3075 - 3079.
[18] W ang Y P, Zhu JW, Yang X J, et a.l Prepara tion and charac terization o f LaN iO3 nanocrystals[ J]. M a ter Res Bul,l 2006, 41( 8) : 1565- 1570.
[19] ChenW F, L i F S, Yu J Y. Salt- assisted com bustion syn thesis o f h igh ly d ispersed pe rvosk ite NdCoO3 nanoparticles[ J]. M ater Lett, 2007, 61( 2): 397- 400.
[20] Li K W, Li H L, Zhang H M, et a.l H ydro therm a l syn thesis o f Eu3+ -doped Y2 Sn2O7 nanocrysta ls [ J ]. M a ter Res Bu l,l 2006, 41( 1): 191- 197.
[21] V andenborreM T, H usson E, Cha try J P, e t a .l Rareearth titanates and stanna tes o f pyro ch lore structure; v ibra tiona l spectra and force fie lds[ J]. J Ram an Spectrosc, 1983, 14( 2): 63- 71.
[22] Pa rsapour F, K elley D F, W illiam s R S. Spectroscopy o f Eu3+ -doped PtS2 nano clusters[ J]. J Phys Chem B, 1998, 102( 41): 7971- 7977. 390


Last Update: 2010-06-30