|Table of Contents|

Complete Three-partite-graph Ramsey Number

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2010年03期
Page:
406-408
Research Field:
Publishing date:

Info

Title:
Complete Three-partite-graph Ramsey Number
Author(s):
LIU Da-jinBAI Lu-feng
Taizhou Institute of Technology,NUST,Taizhou 225300,China
Keywords:
complete three-partite-graph gauss hypergeometric function upper bound independence numbers
PACS:
O157.5
DOI:
-
Abstract:
The upper bound of complete three-partite-graph Ramsey number r(kt,m,n,kn) is studied here.The set of large natural numbers is decomposed into {n′} and{n"}.The lower bound of independence number is denoted by some gauss hypergeometric function.r(Kt,m,n,Kn)= O[nm+t+1/(logn)m+t] is obtained. 还原

References:

[1] L i Yusheng, Tang Xueqing, Zang W enan. Ram sey functions invo lv ing w ith n large [ J]. Disc rete M a th, 2005, 300( 3): 120- 128.
[2] Shearer J. A note on the independence number of tr-i ang le-free graphs[ J]. D iscre teM ath, 1983, 46( 1): 83- 87.
[3] L iYusheng, Rosseau C. On book- com plete g raph ramsey numbers [ J ]. J Combin Theo ry Ser B, 1996, 68( 1): 36- 44.
[4] Li Yusheng, Rosseau C, Zang W enan. A sym ptotic upper bound for ram sey functions [ J ]. G raphs Com bin, 2001, 17( 1): 123- 128.
[5] 李雨生, Rosseau C, 臧文安. 独立数的一个下界 [ J]. 中国科学( A辑) 2001, 31( 10): 865- 870.
[6] Caro Y, LiY, Rousseau C, e t a .l Asympto tic bounds for some bipartite g raph-comp lete graph ram sey numbers[ J]. D iscre teM ath 2000, 220( 1): 51- 56.
[7] k??v?? ri T, S??s V, Tur??n P. On a problem of K. Zarank iw icz[ J]. ColloqM ath, 1954, 3( 2): 50- 57

Memo

Memo:
-
Last Update: 2010-06-30