|Table of Contents|

Uncertain Relation Schema Integration Based on Domain Knowledge


Research Field:
Publishing date:


Uncertain Relation Schema Integration Based on Domain Knowledge
HU Wen-bin12LI Qian-mu1ZHANG Hong1
1.School of Computer Science and Technology,NUST,Nanjing 210094,China;2.School of Computer Engineering,Huaihai Institute of Technology,Lianyungang 222005,China
uncertain schema matching semantic integration proof combination methods uncertain schema integration
To resolve the uncertainty of relation schema integration in relation database,a uncertain schema integration model called URSIM(Uncertain relation schema integration model) is proposed based on domain knowledge.Domain knowledge,semantic integration method and proof combination method are applied in the model.Expression and computing methods of uncertain degree are proposed for every phase.New definitions of uncertain matching relation and uncertain schema integration are proposed.A counting method is proposed for reliability of global integrated schema.Experimental results show that the URSIM is feasible.Compared with the existed methods,the model is efficient and can reduce time complexity.


[ 1 ] M agnan iM, R izopoulos N, M cBr ien P, et a.l Conceptua l m odeling - ER 2005 [ M ]. H e idelberg: Springer Ber lin, 2005: 31- 46.
[ 2] M agnaniM, M ontesi D. Uncerta inty in da ta in teg ration: Current appro aches and open problem s [ A ]. Proceed ings of the First VLDBW orkshop onM anagem ent of Uncerta in Data [ C ]. Enschede, The Nethe rlands: the Centre fo r T elem atics and Info rma tion Techno logy( CTIT), 2007: 18- 31.
[ 3] Dong X L, H alevy A Y, Yu C. Data integ ra tion w ith uncerta inty [ J]. The VLDB Journa,l 2009, 18 ( 2 ): 469- 500.
[ 4] M adhavan J, B ernstein P A, Rahm E. Gener ic schem am atch ing w ith Cupid[ A] . Proceed ing s of the 27th Interna tiona l Conference on V ery La rge Data Bases [ C ]. San Franc isco, CA, USA: M organ Kau fm ann Pub lishers Inc. , 2001: 49- 58.
[ 5] Doan A H, M adhavan J, Dom ingos P, e t a .l Learn ing to m ap onto log ies on the Sem antic W eb [ J]. The VLDB Journa,l 2003, 12( 4): 303- 319. [ 6 ] M elnik S, Garcia-M o lina H, Rahm E. S im ilar ity flood ing: A versa tile graph m atch ing algorithm and its application to schem a m atching [ A ]. Proceed ings of the 18 th Internationa l Conference on Data Eng inee ring[ C ]. W ashing ton, USA: IEEE Com puter Soc iety, 2002: 117- 128.
[ 7] H a levy A, Ra jaram an A, O rd ille J. Data integration: The teenage years[ A]. Proceedings o f the 32nd Inte rnational Conference on VLDB [ C ] . Seou,l Ko rea: VLDB Endowm ent, 2006: 9- 16.
[ 8] No tte lm ann H, Stracc ia U. Splmap: A probab ilistic approach to schem a m a tch ing [ J]. Lec ture Notes in Com pute r Sc ience, 2005, 3408: 81- 95.
[ 9] Nottelm ann H, Stracc ia U. Inform a tion retriev al and machine lea rning for probab ilistic schem a m atch ing [ J]. In fo rm ation Processing andM anagement, 2007, 43( 3) : 552- 576.
[ 10] Ga l A, Anaby-Tavo rA, T rombetta A, M ontes i D. A fram ework fo r m ode ling and eva luating autom atic sem antic reconc iliation [ J]. The VLDB Journa ,l 2003, 14( 1): 1- 18.
[ 11] Dey D, Sarka r S, De P. A d istance-based approach to entity reconc iliation in heterogeneous databases[ J]. IEEE Transactions on Know ledge and Data Eng inee ring, 2002, 14( 3): 567- 582.
[ 12] Ga lA. M anag ing uncerta inty in schem am atching w ith top-k schema m appings[ J]. Journa l on Da ta Sem antics VI, 2006, 6: 90- 114.
[ 13] Dham ankarR, LeeY, Doan A, e t a .l Mi AP: D iscovering com plex sem antic m atches be tw een database schem as[ A] . Proceed ing s of the 2004 ACM S IGMOD Inte rnational Conference onM anagem ent o f Data[ C ]. Paris, French: ACM, 2004: 383- 394.
[ 14] 夏文俊, 朱林户, 陆陶荣. 基于不确定性度量的证 据组合方法[ J]. 计算机应用, 2009, 29( 8): 2257 - 2260.
[ 15] Karasneh Y, Ibrah mi H, OthmanM, et a.l A mode l for ma tching and integrating heterogeneous relational biomedica l databases schem as[A]. Proceedings of the 2009 International Database Eng ineer ing & Applica tions Symposium [ C]. Ca labr ia, Ita ly: ACM, 2009: 16- 18.
[ 16] 黄福玉, 冯玉强, 王龙, 等. 基于关系模型的不确定 性知识表示与推理及其在KM S中的应用[ J]. 南 京理工大学学报( 自然科学版), 2006, 30 ( 5 ): 644- 658.


Last Update: 2012-11-02