|Table of Contents|

Discernibility Relation-based Rough Set in Incomplete Decision System


Research Field:
Publishing date:


Discernibility Relation-based Rough Set in Incomplete Decision System
WEI Li-hua1TANG Zhen-min1DING Hui12WU Gang1
1.School of Computer Science and Technology,NUST,Nanjing 210094,China;2.School of Mathematics & Information Engineering,Jiaxing University,Jiaxing 314001,China;3.College of Information Science & Technology,Drexel University,Philadelphia,PA 19104,USA
incomplete decision system indiscernibility relation discernibility relation lower approximation upper approximation approximation reducts
Considering discernibility that the classical rough set approach based on indiscernibility relation rarely concerns discernibility relation,the classical rough set model is extended on the basis of discernibility relation.A discernibility relation-based rough set theory is further advanced for incomplete decision system in this paper.Indiscernibility relation reflects the commonness of things while discernibility relation displays individuality between them and the rough set model based on discernibility relation can be used to simplify negative rules.In this paper,a new discernibility relation is defined and the main properties of the lower and upper approximations are verified based on the discernibility relation before the construction of the new rough set model.The corresponding judging theorem and computing process for approximation reducts are thereby advanced.


[ 1] ?? Paw lak Z. Rough se ts and inte lligent data ana lys is[ J]. Informa tion Sc iences, 2002, 147( 1): 1- 12.
[ 2] Skow ron A, Paw lak Z. Rud im ents o f rough sets[ J]. Inform ation Sciences, 2007, 177( 1): 3- 27.
[ 3] Paw lak Z. Rough sets?? Theoretica l aspects of reasoning abou t da ta [M ]. Nethe rlands: K luw er Academ ic Pub lishers, 1991.
[ 4] Paw lak Z. Rough set theory and its app lications to data ana lysis[ J] . Cybe rnetics and System s, 1998, 29( 7): 661- 688.
[ 5] Sw in iarsk i RW, Skow ron A. Rough setm ethod in feature selection and recogn ition[ J] . Pattern Recogn ition Letters, 2003, 4( 6): 833- 849.
[ 6] 张文修, 梁怡, 吴伟志. 信息系统与知识发现[M ]. 北京: 科学出版社, 2003. [ 7 ] W u W eizh,i Zhang W enx iu, L i H uaizu. Know ledg e acqu is ition in incom plete fuzzy in fo rm ation system s v ia the rough set approach [ J]. Expert Sy stem s, 2003, 20( 5): 280- 286.
[ 8] K ryszkiew iczM. Rough se t approach to incomp le te inform ation system s [ J]. Info rma tion Sciences, 1998, 112, 39- 49.
[ 9] Stefanow ski J, Tsouk i??s A. On the extension o f rough sets under incomplete information [ A ]. Proceedings o f the Seventh Internationa lW orshop on Rough Sets, Fuzzy Sets, Data M ing ing, and Granu lar-Soft Computing [ C ]. Berlin, Germany: Springer-Ver lag, 1999: 73- 82.
[ 10] 王国胤. Rough集理论在不完备信息系统中的扩充 [ J]. 计算机研究与发展, 2002, 39( 10): 1238- 1243.
[ 11] ZhaoY an, Yao Y iyu, Luo Feng. Data analysis based on d iscern ib ility and indiscern ib ility [ J]. Info rma tion Sc iences, 2002, 147( 1): 1- 12.
[ 12] 潘巍, 王阳生, 杨宏戟. 粗糙集理论中新的针对不 完备信息系统的处理方法研究[ J]. 计算机科学, 2007, 34( 6): 158- 161.
[ 13] W u W e-i zh.i A ttribute reduction based on ev idence theory in incom plete dec ision system s[ J]. Info rma tion Sciences, 2008, 178( 5): 1355- 1371.
[ 14] LeungY, Li Deyu. M ax im al consistent b lock techn ique for ru le acqu isition in incomp lete inform ation system s [ J]. Information Sc iences, 2003, 153: 85- 106.
[ 15] 米据生, 吴伟志, 张文修. 基于变精度粗糙集理论 的知识约简方法[ J]. 系统工程理论与实践, 2004, 1: 76- 82.
[ 16] Leung Y ee, Wu W e izh,i Zhang W enx iu. Know ledg e acqu is ition in incomp le te in fo rm ation system s: A rough set approach[ J]. European Journa l o fOpera tiona lResearch, 2006, 168: 164- 180.
[ 17] ShaoM W, ZhangW X. Dom inance relation and ru les in an incomp le te o rdered inform ation system [ J]. Internationa l Jou rnal o f Inte lligent System s, 2005, 20( 1): 13- 27.
[ 18] Yang Xibe ,i Yu Dongjun, Yang Jingyu, et a.l D iffe rence relation-based rough se t and negativ e ru les in incomp le te inform ation system [ J] . Interna tiona l Journa l o f Uncerta inty, Fuzziness and Know ledge-B ased System s, 2009, 17( 5) : 649- 665.
[ 19] G reco S, Inu iguch iM, S?? ow inski R. Fuzzy rough sets and mu ltip le-prem ise gradual dec is ion rules[ J]. Inte rnationa l Journal o f Approx im ate Reasoning, 2006, 41( 2): 179- 211.
[ 20] 杨习贝, 於东军, 吴陈, 等. 不完备信息系统中基于 相似关系的知识约简[ J] . 计算机科学, 2008, 35( 2): 163- 165.


Last Update: 2012-11-02