|Table of Contents|

Surface Roughness of AlMn1Cu and Cutting Parameter Optimization in High-speed End Milling


Research Field:
Publishing date:


Surface Roughness of AlMn1Cu and Cutting Parameter Optimization in High-speed End Milling
WANG Zhen-hua1ZHAO Chen-gang2YUAN Jun-tang1HU Xiao-qiu1DENG Wen1
1.School of Mechanical Engineering,NUST,Nanjing 210094,China;2.Department of Mechanical Engineering,Anyang Institute of Technology,Anyang 210094,China
high-speed milling surface roughness aluminum alloy cutting parameters genetic algorithm
In order to improve the machined surface quality and processing efficiency of the anti-rust aluminum alloy,a series of cutting experiments on AlMn1Cu is conducted to study the effect of the cutting parameters on the surface roughness in high-speed milling.According to the analysis result of variance(ANOVA) of factorial experiments,the cutting parameters significantly influencing the surface roughness are presented.The predictive mathematic model of surface roughness based on the cutting parameters is established by using the least-squares regression method.An optimization model of cutting parameters leading to maximum material removal rate is built according to the predictive mathematic model of surface roughness,and the genetic algorithm is employed to find the optimum cutting parameters in the different ranges of surface roughness values.The processing efficiency of the ALMn1Cu functional parts of a new type of radar in machining experiment increases by two times utilizing the research results.


[ 1] ?? E rsan A, Nec ip C, Burak B. Design optim ization o f cutting param ete rs w hen turn ing hardened AISI4140 stee l( 63HRC) w ith A lzO3 + T iCN m ixed ceram ic too l [ J]. M ater ia ls and Design, 2007, 28: 1618- 1622.
[ 2] Na lbantM, Gokkaya H, Sur G. Application o f Taguchim ethod in the optim ization of cu tting param eters fo r surface roughness in turn ing [ J]. M ater ia ls and Design, 2007, 28: 1379- 1385.
[ 3] Sonba try I A, Khashaba U A. Prediction of surface roughness pro files fo rm illed sur face using an a rtific ia l neura l ne tw ork and frac tal geom etry approach [ J ]. Journa l o f M ate rial Processing Techno logy, 2008, 200: 271- 278.
[ 4] C aydas U, H asca lik A. A study on surface roughness in abrasive wa terjet m ach ining process using a rtific ia l neural netwo rks and regression ana lysis m ethod [ J]. Journa l of M ater ia l Processing Technology, 2008, 202( 1 /3): 574- 582.
[ 5] Iqba lA, H e N. A fuzzy expe rt system for optim izing param eters and predicting perform ance m easures in hard-m illing pro cess[ J]. Expert System w ith Applications, 2007, 32: 1020- 1027.
[ 6] Chen Lu. Study on pred ic tion o f surface quality in mach ining process [ J]. Journa l o f M ater ia l Process ing Techno logy, 2008, 205( 1 /3): 439- 459.
[ 7] H asan O, Tuncay E, Fehm iE. Pred iction ofm in imum surface roughness in end m illing m old parts using neural ne tw ork and g enetic a lgo rithm [ J]. M ater ia ls and Design, 2006, 27: 735- 744.
[ 8] SeropeK, Stev en R S. M anufac tur ing eng inee ring and techno logy[M ]. 北京: 清华大学出版社, 2006.
[ 9] 李董辉, 童小娇, 万中. 数值最优化[M ]. 北京: 科 学出版社, 2005.
[ 10] 刘文卿. 实验设计[M ]. 北京: 清华大学出版 社, 2005.


Last Update: 2012-11-02