|Table of Contents|

Hybrid Attitude Control for Variable Thrust Axis Based UAV


Research Field:
Publishing date:


Hybrid Attitude Control for Variable Thrust Axis Based UAV
PU Huang-zhongZHEN Zi-yangHUANG Guo-yongWANG Dao-bo
College of Automation Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
unmanned aerial vehicles maneuverability attitude control
In order to improve the autonomous flight performance of a unmanned aerial vehicle(UAV),an attitude control method combining the aerodynamic control surface deflection control and the thrust deflection control is presented here.The total force and moment of the variable thrust axis based UAV are given.The impact of the changed total force on the flight maneuverability is discussed,and the control compensation efficiency of the thrust moment is analyzed.Based on the traditional attitude control system,two thrust deflection angles are introduced as the new control variables,and a hybrid control mode of the flight attitude control system is designed.Simulations of the UAV attitude stabilization control with airflow interferences are done.The results show that the variable thrust axis technology can improve the stability and controllability of a UAV under the strong airflow interference,decrease the flight attitude angles and airflow angle errors,and compensate the inadequate efficiency of the control surfaces.


[ 1] 吴森唐, 费玉华. 飞行控制系统[M ]. 北京: 北京航空航天大学出版社, 2005.
[ 2] Takuya K inoshita, Fum iak i Im ado. A study on the optima l fligh t contro l for an autonom ous UAV [ A ]. Proceeding s o f the 2006 IEEE Inte rnational Conference on M echatronics and Autom ation[ C] . Los A lam itos, Ca-liforn ia, USA: IEEE Compu ter Soc iety, 2006: 996- 1001.
[ 3] Cam pa G, Gu Y, Seanor B, et a.l Design and fligh-t testing of non- linear formation control laws[ J]. Contro l Engineering Practice, 2007, 15( 9): 1077- 1092.
[ 4] L iuW F, Jiang Z, Gong Z B. On line fuzzy se l-f adaptive PID a ttitude contro l of a sub m in i fixed-w ing airveh icle[ A ]. Proceedings of the 2007 IEEE In ternational Conference on Mechatron ics and Autom ation[ C]. W ash ington, DC, USA: IEEE Com puter So ciety,2007: 153- 157.
[ 5] H uang Guoyong, Zhen Z iyang, W ang Daobo. B ra in emo tiona l learn ing based inte lligent contro lle r for nonlinear system [ A ]. Second Internationa l Sym posium on Intelligent Inform ation Techno logy App lication [ C ].Los A lam itos, Ca lifornia, UAS: IEEE Com puter So c-iety, 2008: 660- 663.
[ 6] 江琼, 陈怀民, 吴佳楠. H 鲁棒控制与PID控制相结合的无人机飞行控制研究[ J]. 宇航学报, 2006,27( 2) : 192- 195.
[ 7] 王睿, 祝小平, 周洲, 等. 利用遗传算法和LM I设计固定结构H 2 /H飞行控制律[ J]. 航空学报, 2008,29( 4) : 1031- 1036.
[ 8] Gu D W, Na tesan K, Postlethw a ite I. Proceed ing s o f the Institu tion ofM echan ica l Eng ineers. Part I [ J].Journa l o f System s and Contro l Eng ineer ing, 2008,222( 5): 333- 345.
[ 9] 王文娟, 马洪忠, 刘长林. 无人机综合飞行/推力矢量控制[ J]. 航空学报, 2008, 29(增刊) : 150- 156.
[ 10] 黄国勇, 王道波, 甄子洋. 基于大脑情感学习的推力矢量无人机姿态控制[ J] . 系统工程与电子技术, 2009, 31( 12): 2954- 2957.
[ 11] 方振平, 陈万春, 张曙光. 航空飞行器飞行动力学[M ]. 北京: 北京航空航天大学出版社, 2005.


Last Update: 2012-11-02