|Table of Contents|

Comparison of Filtering Algorithms for GPS Static Point Positioning

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2011年01期
Page:
80-85
Research Field:
Publishing date:

Info

Title:
Comparison of Filtering Algorithms for GPS Static Point Positioning
Author(s):
SUN GangWANG Chang-mingZHANG Ai-jun
School of Mechanical Engineering,NUST,Nanjing 210094,China
Keywords:
global positioning system static point positioning Kalman filtering particle filtering extended Kalman particle filtering
PACS:
P228. 4
DOI:
-
Abstract:
In view of the poor precision of the low-cost GPS positioning system for the static point positioning, Kalman filtering( KF) ,particle filtering( PF) and extended Kalman particle filtering( EKPF) algorithms are respectively applied to the two positioning data sets including latitude,longitude and altitude from two different GPS-OEM boards. The performances of the filtering algorithms are compared,and the results show that the positioning accuracy is improved after applying the filters. The EKPF has the best performance,followed by the PF,and the KF only has a general effect. This result offers an effective solution to improve the positioning accuracy for the low-coast GPS static point positioning system. It verifies the theoretic perfermance of each filtering algorithm.

References:

[1] Choi E,Cicci D A. Analysis of GPS static positioning problems[J]. Applied Mathematics and Computation, 2003,140( 1) : 37-51.
[2] Dubey S,Wahi R,Gwal A K. Ionospheric effects on GPS positioning[J]. Advances in Space Research, 2006,38( 11) : 2478-2484.
[3] Liu Liyu,Amin M G. Tracking performance and average error analysis of GPS discriminators in multipath[J]. Signal Processing,2009,89( 6) : 1224-1239.
[4] 杜晓辉,任章. 基于卡尔曼滤波的GPS 静态定位精度分析[J]. 全球定位系统,2008( 5) : 47-51.
[5] 唐波. 提高GPS 单点定位精度的算法研究[D]. 北京:北京工业大学电子信息与控制工程学院,2006: 26-31.
[6] 秦永元,张洪钺,汪叔华. 卡尔曼滤波与组合导航原理[M]. 西安: 西北工业大学出版社,1998.
[7] Eubank R L. A Kalman filter primer[M]. Boca Raton, Florida: Chapman and Hall /CRC,2005.
[8] 张国良,曾静. 组合导航原理与技术[M]. 西安: 西安交通大学出版社,2008: 125-126.
[9] Arulampalam M S,Maskell S,Gordon N,et al. A tutorial on particle filters for online nonlinear /non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing,2002,50( 2) : 174-188.
[10] 林健,林晓辉,曹喜滨. 粒子滤波在机动飞行器轨道确定中的应用[J]. 控制理论与应用,2008,25( 5) : 811-814.
[11] Doucet A,Godsill S J,Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering[J]. Statistics and Computing,2000,10( 3) : 197-208.

Memo

Memo:
-
Last Update: 2012-02-28