|Table of Contents|

Effect of Roll Angular Velocity and Actuator Time Constant on Guidance Precision of Guided Projectile

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2011年02期
Page:
182-186
Research Field:
Publishing date:

Info

Title:
Effect of Roll Angular Velocity and Actuator Time Constant on Guidance Precision of Guided Projectile
Author(s):
WANG Xu-gangWANG Zhong-yuan
School of Energy and Power Engineering,NUST,Nanjing 210094,China
Keywords:
guided projectiles roll angular velocity actuator time constant guidance precision
PACS:
TJ410.3
DOI:
-
Abstract:
This paper presents the effect of the actuator time constant and roll angular velocity on the fall point accuracy of the guided projectile by building a dynamic model.The input commands of an actuator are trigonometric functions when the guided projectile is equipped with a pair of control surfaces to control the pitch and yaw.The tracking error of the actuator increases with the increment of the roll angular velocity and the actuator time constant.If the proper phase lead angle is added to the input commands of an actuator,the tracking precision of an actuator is enhanced.The phase lead angle is obtained assumably using the product of the actuator time constant and the roll angular velocity.The six degrees of freedom simulation is done with the dynamic model of the guided projectile which includes the transform functions of the actuator commands and the dynamic equations of an actuator.The simulation result shows that the guidance precision increases from 50.31 m to 5.14 m with the phase lead angle 2.5°,the body roll angle velocity 5 r/s and the actuator time constant 0.01 s.The fall point accuracy of the projectile can be enhanced greatly by selecting the proper phase lead angle matching the roll angular velocity and the actuator time constant.The analytical results can be used as the reference to the selection of the roll angular velocity and the design of an actuator.

References:

[1] Mehul P,Zak H,Russ S. Aerodynamic control of a small projectile[A]. 4th AIAA Aerospace Science Meeting and Exhibit[C]. Nevada,USA: AIAA, 2006: 1 -24.
[2] Glebocki R,Zugui M. Gasodynamic control system for INS guided bomb[A]. 47th AIAA Aerospace Science Meeting[C]. Florida,USA: AIAA, 2009: 1 - 13.
[3] 易文俊,王中原,史金光,等. 带鸭舵滑翔增程炮弹 方案弹道研究[J]. 南京理工大学学报( 自然科学 版) , 2008, 32( 3) : 322 - 326.
[4] 史金光,王中原,曹小兵,等. 滑翔增程弹滑翔弹道 设计[J]. 南京理工大学学报( 自然科学版) ,2007, 31( 2) : 147 - 150.
[5] 穆育强,盛安冬. 制导炸弹命中精度的仿真研究 [J]. 系统仿真学报,2009, 21( 3) : 730 - 734.
[6] 钱杏芳,林瑞雄,赵亚男. 导弹飞行力学[M]. 北京: 北京理工大学出版社,2000.
[7] 王强. 21 世纪末制导弹药的发展预测[J]. 制导与 引信, 2004, 25( 1) : 5 - 10.
[8] 吴甲生,雷娟棉. 制导兵器气动布局与气动特性 [M]. 北京: 国防工业出版社,2008.

Memo

Memo:
-
Last Update: 2012-04-30