|Table of Contents|

Initiation of Shielded High Explosive Impacted by Energetic Fragment

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2011年02期
Page:
187-193
Research Field:
Publishing date:

Info

Title:
Initiation of Shielded High Explosive Impacted by Energetic Fragment
Author(s):
HE YuanHE YongPAN Xu-chaoZHANG Xian-fengZHAO Xiao-ning
Ministerial Key Laboratory of ZNDY,NUST,Nanjing 210094,China
Keywords:
explosion mechanics energetic fragments impact initiation critical initiation energy
PACS:
O381
DOI:
-
Abstract:
Based on the one-dimensional shock wave theory and the Wasley’s shock initiation energy criterion,the process of energetic fragment impacted shielded high explosives is theoretically and numerically analyzed.Fragment styles,fragment sizes and shielded plate thicknesses are considered respectively.The results show that the critical initiation velocity of the steel shell fragments is larger than that of the aluminum shell fragments,and with the increase of the diameter of energetic materials and the decrease of the shielding,the critical velocity decreases.The theoretically calculated results agree well with those of the corresponding numerical simulation.The different damage mechanism of energetic fragments and inert fragments is found.The damage mechanism of inert fragments is a kinetic energy of impact,but that of the energetic fragment is an explosive chemical reaction energy.The explosive chemical reaction energy is caused by impacted shock waves.

References:

[1] Taylor P A. Al /PTFE reactive material( RM24) sandia effort: Experiments and Modeling [R]. SAND, 2003: 1840.
[2] Daniel J V. Reinforced reactive material[P]. US Patent: 20050067072A1.
[3] Raafat H G. Reactively induced fragmentating explosives [P]. US Patent: 6846372B1.
[4] Reuben D R. Preparation and study of highly reactive metal powders[R]. ADA150026. 1985.
[5] Reuben D R. Highly reactive transition metal power [J]. J Am Chem Soc, 1977, 99: 4159 - 4165.
[6] Richard G A. Vented chamber calorimetry for impact-initiated energetic materials[A]. The Proceedings of 43rd AIAA Aerospace Sciences Meeting and Exhibit[C]. Reno, Nevada: AIAA, 2005: 279.
[7] Richard G A. Energy release characteristics of impact-initiated energy materials[J]. Mater Res Soc Symp Proc, 2006, 896: 123 -132.
[8] 李旭峰. 含能破片对模拟战斗部的引爆机理[D]. 南京: 南京理工大学机械工程学院,2005.
[9] 李杰. 可爆破片式反导技术研究[D]. 南京: 南京理 工大学机械工程学院,2006.
[10] Walker F E,Wasley R J. Critical energy for shock initiation of heterogeneous explosives[J]. Explosive Stoffe, 1969( 1) : 9 - 13.
[11] 迈耶斯( 美) . 材料的动力学形为[M]. 北京: 国防工 业出版社, 2006.
[12] 何源,何勇,潘绪超. 含能破片冲击薄靶释能时间 [J]. 火炸药学报, 2010, 33( 2) : 25 - 28.
[13] 董小瑞,隋树元. 破片对屏蔽炸药的撞击起爆研究 [J]. 华北工学院学报,1999, 20( 3) : 236 - 238.
[14] Green L. Shock initiation of explosives by the impact of small diameter cylindrical projectiles[A]. 7th Symposium ( International ) on Detonation[C]. White Oak,Silver Spring,Maryland: Naval Surface Weapons Center,1982: 273 -276.
[15] 胡昌明,贺红亮,胡时胜. 45 号钢的动态力学性能研 究[J]. 爆炸与冲击, 2003, 23( 2) : 188 - 192.
[16] 胡湘渝. 凝聚炸药二维冲击波起爆研究[D]. 北京: 北京理工大学爆炸灾害预防与控制国家重点实验 室, 1999.
[17] 张先锋. 聚能侵彻体对带壳炸药引爆研究[D]. 南 京: 南京理工大学机械工程学院,2005.
[18] Murphy M E,Lee E L. Modeling shock initiation in composition B[A]. 10th Symp ( Int ) on Detonation [C]. Boston: Los Alamos National Laboratory,1992: 965 - 970.
[19] 北京工业学院《爆炸及其作用》编写组. 爆炸及其作 用( 上) [M]. 北京: 国防工业出版社,1979.
[20] 王树山,李朝君. 钨合金破片对屏蔽装药冲击起爆 试验研究[J]. 兵工学报, 2001, 22( 2) : 189 - 191.
[21] 王海福,冯顺山. 爆炸载荷下聚氨酯泡沫材料中冲 击波压力特性[J]. 爆炸与冲击,1999,19 ( 1) : 78 - 82.
[22] 徐新春,焦清介. 小尺寸装药爆轰在有机玻璃隔板 中的衰减规律[J]. 含能材料,2009,17 ( 4 ) : 431 - 434.
[23] 章冠人,陈大年. 凝聚炸药起爆动力学[M]. 北京: 国防工业出版社,1991. 193

Memo

Memo:
-
Last Update: 2012-04-30