|Table of Contents|

Evolutionary Design of Gate-level Circuits Based on Fitness Evaluation Expansion Adaptive Genetic Algorithm

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2011年02期
Page:
240-244
Research Field:
Publishing date:

Info

Title:
Evolutionary Design of Gate-level Circuits Based on Fitness Evaluation Expansion Adaptive Genetic Algorithm
Author(s):
BAI Lei1GU Chen1YAN Lu2ZHU Xiao-hua1
1.School of Electronic Engineering and Optoelectronic Technology,NUST,Nanjing 210094,China;2.IntelligentTransport System Division,Nanjing LES Information Technology Limited Company,Nanjing 210007,China
Keywords:
evolutionary design of circuits fitness evaluation expansion gate-level circuits adaptive genetic algorithm evolvable hardware
PACS:
TP18
DOI:
-
Abstract:
To solve the problem of losing potential solution in specifying output cells at fitness evaluation stage of genetic algorithm,a new method based on fitness evaluation expansion adaptive genetic algorithm is proposed here.The method takes the output of every single cell in the evolved array as a potential solution,obtaining a best fitness evaluation value.The proposed method enhances the performance of adaptive genetic algorithm due to avoiding the loss of potential solution.Compared with the conventional algorithm in evolutionary design of circuits,the proposed method has advantages of faster convergence,less iteration and higher probability of obtaining desired solution.

References:

[1] Yao X,Higuichi T. Promises and challenges of evolvable hardware[J]. IEEE Trans on Systems,Man and Cybernetics - Part C: Applications and Reviews,2005, 14( 3) : 549 - 553.
[2] Thompson A,Layzell P,Zebulum R S. Explorations in design space: Unconventional electronics design through artificial evolution[J]. IEEE Trans on Evolutionary Computation, 1999,3 ( 3) : 167 -196.
[3] Coello C A,Christiansen A D. Use of evolutionary techniques to automate the design of combinational circuits [J]. International Journal of Smart Engineering System Design, 2000,2 ( 4) : 299 - 314.
[4] 王小平,曹立民. 遗传算法: 理论、应用与软件实现 [M]. 西安: 西安交通大学出版社,2002.
[5] Zhao S G,Yang W H. Intrinsic hardware evolution based on a prototype of function level FPGA[J]. Chinese Journal of Computers, 2002, 25( 6) : 666 - 669.
[6] Miller J F, Job D,Vassilev V K. Principles in the evolutionary design of digital circuits—Part 1[J]. Genetic Programming and Evolvable Machines, 2000,1 ( 1) : 8 -35.
[7] 赵曙光,刘贵喜,王军宁,等. 基于自适应遗传算法 的模拟电路自动设计方法[J]. 电子学报,2004,32 ( 4) : 680 - 683.
[8] Stomeo E,Kalganova T,Lambert C. Generalisec disjunction decomposition for evolvable hardware[J]. IEEE Trans on Systems,Man and Cybernetics - Part C: Applications and Reviews, 2006, 36( 5) :1024 -1043.
[9] Miller J F,Smith S L. Redundancy and computational efficiency in cartesian genetic programming[J]. IEEE Trans on Evolutionary Computation,2006,10( 2) : 167 - 174. 244

Memo

Memo:
-
Last Update: 2012-04-30