|Table of Contents|

Differential Game Guidance Law with Impact Angle Constraint

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2011年03期
Page:
309-315
Research Field:
Publishing date:

Info

Title:
Differential Game Guidance Law with Impact Angle Constraint
Author(s):
HUA Wen-huaCHEN Xing-lin
School of Astronautics,Harbin Institute of Technology,Harbin 150001,China
Keywords:
guidance laws differential games impact angle constraints terminal projection transformation
PACS:
TJ765
DOI:
-
Abstract:
To improve the interceptor ’ s warhead lethality,the impact angle constraint of the interceptor is researched.Terminal projection transformation is used to reduce the problem ’ s order and a differential game guidance law with impact angle constraint is derived based on a linear quadratic cost function.The guidance gains,the existence of a saddle point solution and the performance of perfect interception are researched.The derivation of this guidance law considers the worst-case target maneuver,so it is not limited to the specific target maneuver and is much appropriate when the target maneuver is unpredictable.Nonlinear system simulations are carried out.The results show that with enough maneuver capability of the interceptor,the miss distance and impact angle error of this guidance law are about 0 even if the scenario is initiated with some heading errors and the target performs a maneuver.

References:

[1] Ryoo C K,Cho H,Tahk M J. Closed-form solutions of optimal guidance with terminal impact angle constraint[A]. Proceedings of the IEEE Conference on Control Applications [C]. New York,USA: IEEE, 2003: 504 -509.
[2] Ryoo C K,Cho H,Tahk M J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance, Control and Dynamics, 2005, 28( 4) : 724 -732.
[3] Ryoo C K,Cho H,Tahk M J. Time-to-go weighted optimal guidance with impact angle constraints[J]. IEEE Transactions on Control System Technology,2006,14 ( 3) : 483 - 492.
[4] Song T L, Shin S J,Cho H. Impact angle control for planer engagements[J]. IEEE Transactions on Aerospace and Electronic Systems, 1999, 35( 4) : 1439 -1444.
[5] Ratnoo A,Ghose D. State-dependent Riccati-equationbased guidance law for impact-angle-constrained trajectories [J]. Journal of Guidance,Control and Dynamics, 2009, 32( 1) : 320 - 325.
[6] Bryson E A,Ho C Y. Applied optimal control[M]. Waltham,USA: Blaisdell, 1969: 154 -155, 271 -295.
[7] 马礼举,魏志鹏. 基于目标姿态信息的导弹微分对 策制导律研究[J]. 弹箭与制导学报,2009,29( 3) : 43 - 46.
[8] 苏晓丹. 飞行器姿态控制系统综合的一种微分对策 方法[J]. 航天控制, 2009, 27( 3) : 72 - 75.
[9] 王长青,史晓丽,王新民,等. 基于LQ 微分对策的最 优规避策略与决策算法[J]. 计算机仿真,2008,25 ( 9) : 74 - 78.
[10] 李登峰,罗飞. 舰艇编队信息战火力分配微分对策 模型及求解[J]. 控制理论与应用,2008,25 ( 6) : 1163 - 1166.
[11] Anderson G M. Comparison of optimal control and differential game Intercept guidance laws[J]. Journal of Guidance and Control, 1981,4 ( 2) : 109 - 115.
[12] Shima T,Golan O M. Linear quadratic differential games guidance law for dual controlled missiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43( 3) : 834 - 842.
[13] Shinar J,Steinberg D. Analysis of optimal evasive maneuvers based on a linearized two-dimensional kinematic model[J]. Journal of Aircraft, 1977, 14( 8) : 795 - 802. 315

Memo

Memo:
-
Last Update: 2012-06-30