|Table of Contents|

Trajectory Generation Algorithm for Automated Fiber Placement with Given Fiber Orientations of Key Points

《南京理工大学学报》(自然科学版)[ISSN:1005-9830/CN:32-1397/N]

Issue:
2011年03期
Page:
410-414
Research Field:
Publishing date:

Info

Title:
Trajectory Generation Algorithm for Automated Fiber Placement with Given Fiber Orientations of Key Points
Author(s):
HUAN Da-junXIAO JunLI Yong
College of Material Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
Keywords:
key points fiber orientations automated fiber placement trajectory generation least-squares method
PACS:
TB33
DOI:
-
Abstract:
To realize the automatic prototyping manufacturing of large composites with complex curved surfaces,according to the requirements of the structural design and the fiber orientations of key points,the trajectory generation algorithm is proposed with the fiber placement angle(directions)distribution function constructed by the least-squares method and the fiber orientations satisfying the fiber placement angle(directions)distribution function by the variable angle fiber placement.According to the fiber placement generated,adding or cutting of the tow is judged by analysis of coverage,and a correspondent software module is proposed by using CATIA CAA.The algorithm is verified by the simulation experiment of an airplane tail section.The result shows the algorithm meets the design requirements of the fiber direction of structural design.

References:

[1] Stewart R. Carbon fibre composites poised for dramatic growth[J]. Reinforced Plastics, 2009, 53( 4) : 16 - 21.
[2] 肖军,李勇,李建龙. 自动铺放技术在大型飞机复合 材料结构件制造中的应用[J]. 航空制造技术, 2008, 28( 1) : 50 - 53.
[3] Waldhart C. Analysis of tow-placed,variable-stiffness laminates[D]. Virginia,USA: Department of Eng-ineering Science and Mechanics,Virginia Polytechnic Institute and State University, 1996.
[4] Wu K C,Gürdal Z. Thermal testing of tow-placed variable stiffness panels [A]. Proceedings of the 42nd AIAA/ASME/ASCE/AHS /ASC Structures,Structural Dynamics and Materials Conference [C]. Seattle, Washington,USA: AIAA, 2001: 1 - 21.
[5] Hale R D,Moon R,Lim K, et al. Integrated design and analysis tools for reduced weight,affordable fiber steered composites[R]. Kansas,USA: University of Kansas, 2004.
[6] Shirinzadeh B,Cassidy G,Oetomo D,et al. Trajectory generation for open-contoured structures in robotic fiber placement[J]. Robotics and Computer-Integrated Manufacturing, 2007, 23( 4) : 380 - 394.
[7] 李善缘,王小平,朱丽君. 复合材料铺丝成型中的路 径规划[J]. 宇航材料工艺, 2009, 20( 2) : 25 - 29.
[8] 党旭丹,肖军,还大军. 自动铺丝平行等距轨迹规划算 法实现[J]. 武汉大学学报, 2007, 53( 5) : 613 -616.
[9] 林福建. 自由型面复合材料零件铺放束成型轨迹规 划[D]. 南京: 南京航空航天大学机电学院, 2005.
[10] 王念东,刘毅,肖军. 复合材料管状结构自动铺丝路 径算法[J]. 计算机辅助设计与图形学报,2008,20 ( 2) : 228 - 233.
[11] 周燚. 复合材料自动铺丝CAD 技术研究[D]. 南京: 南京航空航天大学机电学院, 2006.
[12] 邵冠军,游有鹏,熊慧. 自由曲面构件的纤维铺放路 径规划[J]. 南京航空航天大学学报, 2005, 37( S1) : 144 - 148.
[13] Setoodeh S,Abdalla M M. Design of variable-stiffness composite panels for maximum buckling load [J]. Composite Structures, 2009, 87( 3) : 109 - 117.
[14] Kaufmann M,Zenkert D,Mattei C,et al. Cost optimization of composite aircraft structures including variable laminate qualities[J]. Composites Science and Technology 2008, 68( 13) : 2748 - 2754.
[15] Lopes C S,Gürdal Z,Camanho P. Variable-stiffness composite panels: Buckling and first-ply failure improvements over straight-fibre laminates[J]. Computers & Structures, 2008, 86( 9) : 897 - 907.

Memo

Memo:
-
Last Update: 2012-06-30